IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36810-8.html
   My bibliography  Save this article

Insights into pulmonary phosphate homeostasis and osteoclastogenesis emerge from the study of pulmonary alveolar microlithiasis

Author

Listed:
  • Yasuaki Uehara

    (University of Cincinnati College of Medicine)

  • Yusuke Tanaka

    (University of Cincinnati College of Medicine)

  • Shuyang Zhao

    (Cincinnati Children’s Hospital Medical Center)

  • Nikolaos M. Nikolaidis

    (University of Cincinnati College of Medicine)

  • Lori B. Pitstick

    (University of Cincinnati College of Medicine)

  • Huixing Wu

    (University of Cincinnati College of Medicine)

  • Jane J. Yu

    (University of Cincinnati College of Medicine)

  • Erik Zhang

    (University of Cincinnati College of Medicine)

  • Yoshihiro Hasegawa

    (University of Cincinnati College of Medicine)

  • John G. Noel

    (University of Cincinnati College of Medicine)

  • Jason C. Gardner

    (University of Cincinnati College of Medicine)

  • Elizabeth J. Kopras

    (University of Cincinnati College of Medicine)

  • Wendy D. Haffey

    (University of Cincinnati College of Medicine)

  • Kenneth D. Greis

    (University of Cincinnati College of Medicine)

  • Jinbang Guo

    (Cincinnati Children’s Hospital Medical Center)

  • Jason C. Woods

    (Cincinnati Children’s Hospital Medical Center)

  • Kathryn A. Wikenheiser-Brokamp

    (Cincinnati Children’s Hospital Medical Center)

  • Jennifer E. Kyle

    (Pacific Northwest National Laboratory)

  • Charles Ansong

    (Pacific Northwest National Laboratory)

  • Steven L. Teitelbaum

    (Washington University School of Medicine)

  • Yoshikazu Inoue

    (National Hospital Organization Kinki-Chuo Chest Medical Center)

  • Göksel Altinişik

    (Pamukkale University)

  • Yan Xu

    (Cincinnati Children’s Hospital Medical Center
    University of Cincinnati School of Medicine)

  • Francis X. McCormack

    (University of Cincinnati College of Medicine)

Abstract

Pulmonary alveolar microlithiasis is an autosomal recessive lung disease caused by a deficiency in the pulmonary epithelial Npt2b sodium-phosphate co-transporter that results in accumulation of phosphate and formation of hydroxyapatite microliths in the alveolar space. The single cell transcriptomic analysis of a pulmonary alveolar microlithiasis lung explant showing a robust osteoclast gene signature in alveolar monocytes and the finding that calcium phosphate microliths contain a rich protein and lipid matrix that includes bone resorbing osteoclast enzymes and other proteins suggested a role for osteoclast-like cells in the host response to microliths. While investigating the mechanisms of microlith clearance, we found that Npt2b modulates pulmonary phosphate homeostasis through effects on alternative phosphate transporter activity and alveolar osteoprotegerin, and that microliths induce osteoclast formation and activation in a receptor activator of nuclear factor-κB ligand and dietary phosphate dependent manner. This work reveals that Npt2b and pulmonary osteoclast-like cells play key roles in pulmonary homeostasis and suggest potential new therapeutic targets for the treatment of lung disease.

Suggested Citation

  • Yasuaki Uehara & Yusuke Tanaka & Shuyang Zhao & Nikolaos M. Nikolaidis & Lori B. Pitstick & Huixing Wu & Jane J. Yu & Erik Zhang & Yoshihiro Hasegawa & John G. Noel & Jason C. Gardner & Elizabeth J. K, 2023. "Insights into pulmonary phosphate homeostasis and osteoclastogenesis emerge from the study of pulmonary alveolar microlithiasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36810-8
    DOI: 10.1038/s41467-023-36810-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36810-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36810-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyle J. Travaglini & Ahmad N. Nabhan & Lolita Penland & Rahul Sinha & Astrid Gillich & Rene V. Sit & Stephen Chang & Stephanie D. Conley & Yasuo Mori & Jun Seita & Gerald J. Berry & Joseph B. Shrager , 2020. "A molecular cell atlas of the human lung from single-cell RNA sequencing," Nature, Nature, vol. 587(7835), pages 619-625, November.
    2. William J. Boyle & W. Scott Simonet & David L. Lacey, 2003. "Osteoclast differentiation and activation," Nature, Nature, vol. 423(6937), pages 337-342, May.
    3. Junyue Cao & Malte Spielmann & Xiaojie Qiu & Xingfan Huang & Daniel M. Ibrahim & Andrew J. Hill & Fan Zhang & Stefan Mundlos & Lena Christiansen & Frank J. Steemers & Cole Trapnell & Jay Shendure, 2019. "The single-cell transcriptional landscape of mammalian organogenesis," Nature, Nature, vol. 566(7745), pages 496-502, February.
    4. Jinhu Xiong & Keisha Cawley & Marilina Piemontese & Yuko Fujiwara & Haibo Zhao & Joseph J. Goellner & Charles A. O’Brien, 2018. "Soluble RANKL contributes to osteoclast formation in adult mice but not ovariectomy-induced bone loss," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuma Takano & Jun Suzuki & Kotaro Nomura & Gento Fujii & Junko Zenkoh & Hitomi Kawai & Yuta Kuze & Yukie Kashima & Satoi Nagasawa & Yuka Nakamura & Motohiro Kojima & Katsuya Tsuchihara & Masahide Seki, 2024. "Spatially resolved gene expression profiling of tumor microenvironment reveals key steps of lung adenocarcinoma development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Sivakamasundari Vijayakumar & Roberta Sala & Gugene Kang & Angela Chen & Michelle Ann Pablo & Abidemi Ismail Adebayo & Andrea Cipriano & Jonas L. Fowler & Danielle L. Gomes & Lay Teng Ang & Kyle M. Lo, 2023. "Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Lavinia Paternoster & Mattias Lorentzon & Liesbeth Vandenput & Magnus K Karlsson & Östen Ljunggren & Andreas Kindmark & Dan Mellstrom & John P Kemp & Caroline E Jarett & Jeff M P Holly & Adrian Sayers, 2010. "Genome-Wide Association Meta-Analysis of Cortical Bone Mineral Density Unravels Allelic Heterogeneity at the RANKL Locus and Potential Pleiotropic Effects on Bone," PLOS Genetics, Public Library of Science, vol. 6(11), pages 1-12, November.
    4. Qiang Zhang & Sai Ma & Zhengzhi Liu & Bohan Zhu & Zirui Zhou & Gaoshan Li & J. Javier Meana & Javier González-Maeso & Chang Lu, 2023. "Droplet-based bisulfite sequencing for high-throughput profiling of single-cell DNA methylomes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jialiang S. Wang & Tushar Kamath & Courtney M. Mazur & Fatemeh Mirzamohammadi & Daniel Rotter & Hironori Hojo & Christian D. Castro & Nicha Tokavanich & Rushi Patel & Nicolas Govea & Tetsuya Enishi & , 2021. "Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    6. Brian DeVeale & Leqian Liu & Ryan Boileau & Jennifer Swindlehurst-Chan & Bryan Marsh & Jacob W. Freimer & Adam Abate & Robert Blelloch, 2022. "G1/S restriction point coordinates phasic gene expression and cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Ci Fu & Xiang Zhang & Amanda O. Veri & Kali R. Iyer & Emma Lash & Alice Xue & Huijuan Yan & Nicole M. Revie & Cassandra Wong & Zhen-Yuan Lin & Elizabeth J. Polvi & Sean D. Liston & Benjamin VanderSlui, 2021. "Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    9. Junyi Chen & Xiaoying Wang & Anjun Ma & Qi-En Wang & Bingqiang Liu & Lang Li & Dong Xu & Qin Ma, 2022. "Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Kotaro Shimizu & Junichi Kikuta & Yumi Ohta & Yutaka Uchida & Yu Miyamoto & Akito Morimoto & Shinya Yari & Takashi Sato & Takefumi Kamakura & Kazuo Oshima & Ryusuke Imai & Yu-Chen Liu & Daisuke Okuzak, 2023. "Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Young Hee Lee & Yu-Been Kim & Kyu Sik Kim & Mirae Jang & Ha Young Song & Sang-Ho Jung & Dong-Soo Ha & Joon Seok Park & Jaegeon Lee & Kyung Min Kim & Deok-Hyeon Cheon & Inhyeok Baek & Min-Gi Shin & Eun, 2023. "Lateral hypothalamic leptin receptor neurons drive hunger-gated food-seeking and consummatory behaviours in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Sandra Curras-Alonso & Juliette Soulier & Thomas Defard & Christian Weber & Sophie Heinrich & Hugo Laporte & Sophie Leboucher & Sonia Lameiras & Marie Dutreix & Vincent Favaudon & Florian Massip & Tho, 2023. "An interactive murine single-cell atlas of the lung responses to radiation injury," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Seung-Hyun Jung & Byung-Hee Hwang & Sun Shin & Eun-Hye Park & Sin-Hee Park & Chan Woo Kim & Eunmin Kim & Eunho Choo & Ik Jun Choi & Filip K. Swirski & Kiyuk Chang & Yeun-Jun Chung, 2022. "Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2hi macrophages in infarcted hearts," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Hailun Zhu & Sihai Dave Zhao & Alokananda Ray & Yu Zhang & Xin Li, 2022. "A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    16. Allen Yen & Simona Sarafinovska & Xuhua Chen & Dominic D. Skinner & Fatjon Leti & MariaLynn Crosby & Jessica Hoisington-Lopez & Yizhe Wu & Jiayang Chen & Zipeng A. Li & Kevin K. Noguchi & Robi D. Mitr, 2024. "MYT1L deficiency impairs excitatory neuron trajectory during cortical development," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Luke Simpson & Andrew Strange & Doris Klisch & Sophie Kraunsoe & Takuya Azami & Daniel Goszczynski & Triet Minh & Benjamin Planells & Nadine Holmes & Fei Sang & Sonal Henson & Matthew Loose & Jennifer, 2024. "A single-cell atlas of pig gastrulation as a resource for comparative embryology," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Hannah Drew Rickner & Lulu Jiang & Rui Hong & Nicholas K. O’Neill & Chromewell A. Mojica & Benjamin J. Snyder & Lushuang Zhang & Dipan Shaw & Maria Medalla & Benjamin Wolozin & Christine S. Cheng, 2022. "Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    20. Cui-Lian Guo & Chong-Shu Wang & Zhi-Chao Wang & Fei-Fan Liu & Lin Liu & Yang Yang & Xia Li & Bei Guo & Ruo-Yu Lu & Bo Liao & Jin-Xin Liu & Hai Wang & Jia Song & Yin Yao & Li-Ping Zhu & Di Yu & Zheng L, 2024. "Granzyme K+CD8+ T cells interact with fibroblasts to promote neutrophilic inflammation in nasal polyps," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36810-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.