IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3384-d187445.html
   My bibliography  Save this article

On the Dynamics of Flexible Plates under Rotational Motions

Author

Listed:
  • Shifeng Fu

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China
    Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA)

  • Yaqing Jin

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA)

  • Jin-Tae Kim

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA)

  • Zhongyu Mao

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA
    State Key Laboratory of Hydroscience and Engineering & Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Yuan Zheng

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China)

  • Leonardo P. Chamorro

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA
    Department of Aerospace Engineering, University of Illinois, Urbana, IL 61801, USA
    Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801, USA)

Abstract

The reconfiguration of low-aspect-ratio flexible plates, required power and induced flow under pure rotation were experimentally inspected for various plate stiffness and angular velocities ω . Particle tracking velocimetry (PTV) and particle image velocimetry (PIV) were used to characterize the plate deformation along their span as well as the flow and turbulence statistics in the vicinity of the structures. Results show the characteristic role of stiffness and ω in modulating the structure reconfiguration, power required and induced flow. The inspected configurations allowed inspecting various plate deformations ranging from minor to extreme bending over 90 ∘ between the tangents of the two tips. Regardless of the case, the plates did not undergo noticeable deformation in the last ∼30% of the span. Location of the maximum deformation along the plate followed a trend s m ∝ l o g ( C a ) , where C a is the Cauchy number, which indicated that s m is roughly fixed at sufficiently large C a . The angle ( α ) between the plate in the vicinity of the tip and the tangential vector of the motions exhibited two distinctive, nearly-linear trends as a function of C a , within C a ∈ ( 0 , 15 ) and C a ∈ ( 20 , 70 ) , with a matching within these C a at C a > 70 , α ≈ 45 ∘ . Induced flow revealed a local maximum of the turbulence levels at around 60% of the span of the plate; however, the largest turbulence enhancement occurred near the tip. Flexibility of the plate strongly modulated the spatial distribution of small-scale vortical structures; they were located along the plate wake in the stiffer plate and relatively concentrated near the tip in the low-stiffness plate. Due to relatively large deformation, rotational and wake effects, a simple formulation for predicting the mean reconfiguration showed offset; however, a bulk, constant factor on ω accounted for the offset between predictions and measurements at deformation reaching ∼ 60 ∘ between the tips.

Suggested Citation

  • Shifeng Fu & Yaqing Jin & Jin-Tae Kim & Zhongyu Mao & Yuan Zheng & Leonardo P. Chamorro, 2018. "On the Dynamics of Flexible Plates under Rotational Motions," Energies, MDPI, vol. 11(12), pages 1-11, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3384-:d:187445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silas Alben & Michael Shelley & Jun Zhang, 2002. "Drag reduction through self-similar bending of a flexible body," Nature, Nature, vol. 420(6915), pages 479-481, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Ferrari & Riccardo Rossi & Annalisa Di Bernardino, 2022. "A Review of Laboratory and Numerical Techniques to Simulate Turbulent Flows," Energies, MDPI, vol. 15(20), pages 1-56, October.
    2. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiting Qi & Yu Bai & Xin Cao & Erpeng Li, 2022. "The Deformation and Shear Vortex Width of Flexible Vegetation Roots in an Artificial Floating Bed Channel," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    2. Cognet, V. & Courrech du Pont, S. & Thiria, B., 2020. "Material optimization of flexible blades for wind turbines," Renewable Energy, Elsevier, vol. 160(C), pages 1373-1384.
    3. J. Gaitan-Aroca & Fabio Sierra & Jose Ulises Castellanos Contreras, 2020. "Bio-Inspired Rotor Design Characterization of a Horizontal Axis Wind Turbine," Energies, MDPI, vol. 13(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3384-:d:187445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.