IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v420y2002i6915d10.1038_nature01164.html
   My bibliography  Save this article

The role of parasites in sympatric and allopatric host diversification

Author

Listed:
  • Angus Buckling

    (University of Bath)

  • Paul B. Rainey

    (University of Oxford
    The University of Auckland)

Abstract

Exploiters (parasites and predators) are thought to play a significant role in diversification, and ultimately speciation, of their hosts or prey1,2,3. Exploiters may drive sympatric (within-population) diversification if there are a variety of exploiter-resistance strategies or fitness costs associated with exploiter resistance4,5,6,7,8. Exploiters may also drive allopatric (between-population) diversification by creating different selection pressures and increasing the rate of random divergence9,10. We examined the effect of a virulent viral parasite (phage) on the diversification of the bacterium Pseudomonas fluorescens in spatially structured microcosms11. Here we show that in the absence of phages, bacteria rapidly diversified into spatial niche specialists with similar patterns of diversity across replicate populations. In the presence of phages, sympatric diversity was greatly reduced, as a result of phage-imposed reductions in host density decreasing competition for resources. In contrast, allopatric diversity was greatly increased as a result of phage-imposed selection for resistance, which caused populations to follow divergent evolutionary trajectories. These results show that exploiters can drive diversification between populations, but may inhibit diversification within populations by opposing diversifying selection that arises from resource competition.

Suggested Citation

  • Angus Buckling & Paul B. Rainey, 2002. "The role of parasites in sympatric and allopatric host diversification," Nature, Nature, vol. 420(6915), pages 496-499, December.
  • Handle: RePEc:nat:nature:v:420:y:2002:i:6915:d:10.1038_nature01164
    DOI: 10.1038/nature01164
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01164
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demetra Andreou & Christophe Eizaguirre & Thomas Boehm & Manfred Milinski, 2017. "Mate choice in sticklebacks reveals that immunogenes can drive ecological speciation," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 953-961.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:420:y:2002:i:6915:d:10.1038_nature01164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.