IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v417y2002i6888d10.1038_417515a.html
   My bibliography  Save this article

Crystal structure and mechanism of a calcium-gated potassium channel

Author

Listed:
  • Youxing Jiang

    (Rockefeller University)

  • Alice Lee

    (Rockefeller University)

  • Jiayun Chen

    (Rockefeller University)

  • Martine Cadene

    (Rockefeller University)

  • Brian T. Chait

    (Rockefeller University)

  • Roderick MacKinnon

    (Rockefeller University)

Abstract

Ion channels exhibit two essential biophysical properties; that is, selective ion conduction, and the ability to gate-open in response to an appropriate stimulus. Two general categories of ion channel gating are defined by the initiating stimulus: ligand binding (neurotransmitter- or second-messenger-gated channels) or membrane voltage (voltage-gated channels). Here we present the structural basis of ligand gating in a K+ channel that opens in response to intracellular Ca2+. We have cloned, expressed, analysed electrical properties, and determined the crystal structure of a K+ channel (MthK) from Methanobacterium thermoautotrophicum in the Ca2+-bound, opened state. Eight RCK domains (regulators of K+ conductance) form a gating ring at the intracellular membrane surface. The gating ring uses the free energy of Ca2+ binding in a simple manner to perform mechanical work to open the pore.

Suggested Citation

  • Youxing Jiang & Alice Lee & Jiayun Chen & Martine Cadene & Brian T. Chait & Roderick MacKinnon, 2002. "Crystal structure and mechanism of a calcium-gated potassium channel," Nature, Nature, vol. 417(6888), pages 515-522, May.
  • Handle: RePEc:nat:nature:v:417:y:2002:i:6888:d:10.1038_417515a
    DOI: 10.1038/417515a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/417515a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/417515a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangyang Wang & Shaokang Yang & Jingwei Zhang & Zhuo Chen & Bo Zhu & Jian Li & Shijing Liang & Yunxiang Bai & Jianhong Xu & Dewei Rao & Liangliang Dong & Chunfang Zhang & Xiaowei Yang, 2023. "Scalable and switchable CO2-responsive membranes with high wettability for separation of various oil/water systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Tobias Raisch & Andreas Brockmann & Ulrich Ebbinghaus-Kintscher & Jörg Freigang & Oliver Gutbrod & Jan Kubicek & Barbara Maertens & Oliver Hofnagel & Stefan Raunser, 2021. "Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Eva Chovancova & Antonin Pavelka & Petr Benes & Ondrej Strnad & Jan Brezovsky & Barbora Kozlikova & Artur Gora & Vilem Sustr & Martin Klvana & Petr Medek & Lada Biedermannova & Jiri Sochor & Jiri Damb, 2012. "CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    4. Marcos Matamoros & Xue Wen Ng & Joshua B. Brettmann & David W. Piston & Colin G. Nichols, 2023. "Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:417:y:2002:i:6888:d:10.1038_417515a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.