IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36685-9.html
   My bibliography  Save this article

Scalable and switchable CO2-responsive membranes with high wettability for separation of various oil/water systems

Author

Listed:
  • Yangyang Wang

    (Jiangnan University)

  • Shaokang Yang

    (Jiangsu University)

  • Jingwei Zhang

    (Tsinghua University)

  • Zhuo Chen

    (Tsinghua University)

  • Bo Zhu

    (Jiangnan University)

  • Jian Li

    (Jiangnan University)

  • Shijing Liang

    (Fuzhou University)

  • Yunxiang Bai

    (Jiangnan University)

  • Jianhong Xu

    (Tsinghua University)

  • Dewei Rao

    (Jiangsu University)

  • Liangliang Dong

    (Jiangnan University)

  • Chunfang Zhang

    (Jiangnan University)

  • Xiaowei Yang

    (Shanghai Jiao Tong University)

Abstract

Smart membranes with responsive wettability show promise for controllably separating oil/water mixtures, including immiscible oil-water mixtures and surfactant-stabilized oil/water emulsions. However, the membranes are challenged by unsatisfactory external stimuli, inadequate wettability responsiveness, difficulty in scalability and poor self-cleaning performance. Here, we develop a capillary force-driven confinement self-assembling strategy to construct a scalable and stable CO2-responsive membrane for the smart separation of various oil/water systems. In this process, the CO2-responsive copolymer can homogeneously adhere to the membrane surface by manipulating the capillary force, generating a membrane with a large area up to 3600 cm2 and excellent switching wettability between high hydrophobicity/underwater superoleophilicity and superhydrophilicity/underwater superoleophobicity under CO2/N2 stimulation. The membrane can be applied to various oil/water systems, including immiscible mixtures, surfactant-stabilized emulsions, multiphase emulsions and pollutant-containing emulsions, demonstrating high separation efficiency (>99.9%), recyclability, and self-cleaning performance. Due to robust separation properties coupled with the excellent scalability, the membrane shows great implications for smart liquid separation.

Suggested Citation

  • Yangyang Wang & Shaokang Yang & Jingwei Zhang & Zhuo Chen & Bo Zhu & Jian Li & Shijing Liang & Yunxiang Bai & Jianhong Xu & Dewei Rao & Liangliang Dong & Chunfang Zhang & Xiaowei Yang, 2023. "Scalable and switchable CO2-responsive membranes with high wettability for separation of various oil/water systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36685-9
    DOI: 10.1038/s41467-023-36685-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36685-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36685-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guohua Zhang & Bingyu Li & Yan Zhou & Xiaofei Chen & Bao Li & Zhong-Yuan Lu & Lixin Wu, 2020. "Processing supramolecular framework for free interconvertible liquid separation," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Youxing Jiang & Alice Lee & Jiayun Chen & Martine Cadene & Brian T. Chait & Roderick MacKinnon, 2002. "Crystal structure and mechanism of a calcium-gated potassium channel," Nature, Nature, vol. 417(6888), pages 515-522, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva Chovancova & Antonin Pavelka & Petr Benes & Ondrej Strnad & Jan Brezovsky & Barbora Kozlikova & Artur Gora & Vilem Sustr & Martin Klvana & Petr Medek & Lada Biedermannova & Jiri Sochor & Jiri Damb, 2012. "CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    2. Guohua Zhang & Xinyue Li & Gang Chen & Yue Zhang & Mingfeng Wei & Xiaofei Chen & Bao Li & Yuqing Wu & Lixin Wu, 2023. "Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Tobias Raisch & Andreas Brockmann & Ulrich Ebbinghaus-Kintscher & Jörg Freigang & Oliver Gutbrod & Jan Kubicek & Barbara Maertens & Oliver Hofnagel & Stefan Raunser, 2021. "Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Marcos Matamoros & Xue Wen Ng & Joshua B. Brettmann & David W. Piston & Colin G. Nichols, 2023. "Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36685-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.