IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6870d10.1038_415389a.html
   My bibliography  Save this article

Antimicrobial peptides of multicellular organisms

Author

Listed:
  • Michael Zasloff

    (University of Pennsylvania School of Medicine
    Georgetown University, Medical Center)

Abstract

Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

Suggested Citation

  • Michael Zasloff, 2002. "Antimicrobial peptides of multicellular organisms," Nature, Nature, vol. 415(6870), pages 389-395, January.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6870:d:10.1038_415389a
    DOI: 10.1038/415389a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415389a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415389a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo F Vicente & Luis Guilherme M Basso & Graziely F Cespedes & Esteban N Lorenzón & Mariana S Castro & Maria José S Mendes-Giannini & Antonio José Costa-Filho & Eduardo M Cilli, 2013. "Dynamics and Conformational Studies of TOAC Spin Labeled Analogues of Ctx(Ile21)-Ha Peptide from Hypsiboas albopunctatus," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-12, April.
    2. Abdullah Kaviani Rad & Angelika Astaykina & Rostislav Streletskii & Yeganeh Afsharyzad & Hassan Etesami & Mehdi Zarei & Siva K. Balasundram, 2022. "An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils," IJERPH, MDPI, vol. 19(8), pages 1-27, April.
    3. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    4. Li Liu & Ying Fang & Qingsheng Huang & Jianhua Wu, 2011. "A Rigidity-Enhanced Antimicrobial Activity: A Case for Linear Cationic α-Helical Peptide HP(2–20) and Its Four Analogues," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    5. Erik Hartman & Fredrik Forsberg & Sven Kjellström & Jitka Petrlova & Congyu Luo & Aaron Scott & Manoj Puthia & Johan Malmström & Artur Schmidtchen, 2024. "Peptide clustering enhances large-scale analyses and reveals proteolytic signatures in mass spectrometry data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Matthijs P. Hoelscher & Joachim Forner & Silvia Calderone & Carolin Krämer & Zachary Taylor & F. Vanessa Loiacono & Shreya Agrawal & Daniel Karcher & Fabio Moratti & Xenia Kroop & Ralph Bock, 2022. "Expression strategies for the efficient synthesis of antimicrobial peptides in plastids," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Carlos Polanco González & Marco Aurelio Nuño Maganda & Miguel Arias-Estrada & Gabriel del Rio, 2011. "An FPGA Implementation to Detect Selective Cationic Antibacterial Peptides," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-7, June.
    8. Giuseppe Maccari & Mariagrazia Di Luca & Riccardo Nifosí & Francesco Cardarelli & Giovanni Signore & Claudia Boccardi & Angelo Bifone, 2013. "Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    9. Larrañaga, Patricia & Díaz-Dellavalle, Paola & Cabrera, Andrea & Alem, Diego & Leoni, Carolina & Almeida-Souza, André Luis & Giovanni-De-Simone, Salvatore & Dalla-Rizza, Marco, 2012. "Activity of Naturally Derived Antimicrobial Peptides against Filamentous Fungi Relevant for Agriculture," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 1(2).
    10. K. Danowski & D. Sorg & J. Gross & H.H.D. Meyer & H. Kliem, 2012. "Innate defense capability of challenged primary bovine mammary epithelial cells after an induced negative energy balance in vivo," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 57(5), pages 207-219.
    11. Guilherme D Brand & Mariana T Q Magalhães & Maria L P Tinoco & Francisco J L Aragão & Jacques Nicoli & Sharon M Kelly & Alan Cooper & Carlos Bloch Jr, 2012. "Probing Protein Sequences as Sources for Encrypted Antimicrobial Peptides," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-14, September.
    12. Jiayang Xie & Min Zhou & Yuxin Qian & Zihao Cong & Sheng Chen & Wenjing Zhang & Weinan Jiang & Chengzhi Dai & Ning Shao & Zhemin Ji & Jingcheng Zou & Ximian Xiao & Longqiang Liu & Minzhang Chen & Jin , 2021. "Addressing MRSA infection and antibacterial resistance with peptoid polymers," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6870:d:10.1038_415389a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.