Dynamics of mode entanglement induced by particle-tunneling in the extended Bose–Hubbard dimer model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2022.127566
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Olaf Mandel & Markus Greiner & Artur Widera & Tim Rom & Theodor W. Hänsch & Immanuel Bloch, 2003. "Controlled collisions for multi-particle entanglement of optically trapped atoms," Nature, Nature, vol. 425(6961), pages 937-940, October.
- Joachim Kopp, 2008. "Efficient Numerical Diagonalization Of Hermitian3 × 3matrices," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 523-548.
- S. Fölling & S. Trotzky & P. Cheinet & M. Feld & R. Saers & A. Widera & T. Müller & I. Bloch, 2007. "Direct observation of second-order atom tunnelling," Nature, Nature, vol. 448(7157), pages 1029-1032, August.
- Marco Anderlini & Patricia J. Lee & Benjamin L. Brown & Jennifer Sebby-Strabley & William D. Phillips & J. V. Porto, 2007. "Controlled exchange interaction between pairs of neutral atoms in an optical lattice," Nature, Nature, vol. 448(7152), pages 452-456, July.
- Markus Greiner & Olaf Mandel & Tilman Esslinger & Theodor W. Hänsch & Immanuel Bloch, 2002. "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature, Nature, vol. 415(6867), pages 39-44, January.
- Joachim Kopp, 2008. "Errata: "Efficient Numerical Diagonalization Of Hermitian3 × 3matrices"," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 845-845.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rizzatti, Eduardo Osório & Gomes Filho, Márcio Sampaio & Malard, Mariana & Barbosa, Marco Aurélio A., 2019. "Waterlike anomalies in the Bose–Hubbard model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 323-330.
- Meng, Hongjuan & Zhou, Yushan & Li, Xiaolin & Ren, Xueping & Wan, Xiaohuan & Zhou, Zhikun & Wang, Wenyuan & Shi, Yuren, 2021. "Gap solitons in Bose–Einstein condensate loaded in a honeycomb optical lattice: Nonlinear dynamical stability, tunneling, and self-trapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
- Jiang, Xunda & Zeng, Yue & Ji, Yikai & Liu, Bin & Qin, Xizhou & Li, Yongyao, 2022. "Vortex formation and quench dynamics of rotating quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
- Mieck, B., 2003. "Functional integral and transfer-matrix approach for 1D bosonic many-body systems with a contact potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 439-454.
- Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Tao Chen & Chenxi Huang & Ivan Velkovsky & Kaden R. A. Hazzard & Jacob P. Covey & Bryce Gadway, 2024. "Strongly interacting Rydberg atoms in synthetic dimensions with a magnetic flux," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Shi, Zeyun & Badshah, Fazal & Qin, Lu & Zhou, Yuan & Huang, Haibo & Zhang, Yong-Chang, 2023. "Spatially modulated control of pattern formation in a general nonlocal nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Beini Gao & Daniel G. Suárez-Forero & Supratik Sarkar & Tsung-Sheng Huang & Deric Session & Mahmoud Jalali Mehrabad & Ruihao Ni & Ming Xie & Pranshoo Upadhyay & Jonathan Vannucci & Sunil Mittal & Kenj, 2024. "Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
More about this item
Keywords
Mode entanglement; Particle tunneling; Bose–Hubbard Hamiltonian;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122003946. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.