IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6838d10.1038_35079500.html
   My bibliography  Save this article

Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors

Author

Listed:
  • Ming Zhou

    (Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University)

  • João H. Morais-Cabral

    (Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University
    Yale University)

  • Sabine Mann

    (Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University)

  • Roderick MacKinnon

    (Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University)

Abstract

Many voltage-dependent K+ channels open when the membrane is depolarized and then rapidly close by a process called inactivation. Neurons use inactivating K+ channels to modulate their firing frequency. In Shaker-type K+ channels, the inactivation gate, which is responsible for the closing of the channel, is formed by the channel's cytoplasmic amino terminus. Here we show that the central cavity and inner pore of the K+ channel form the receptor site for both the inactivation gate and small-molecule inhibitors. We propose that inactivation occurs by a sequential reaction in which the gate binds initially to the cytoplasmic channel surface and then enters the pore as an extended peptide. This mechanism accounts for the functional properties of K+ channel inactivation and indicates that the cavity may be the site of action for certain drugs that alter cation channel function.

Suggested Citation

  • Ming Zhou & João H. Morais-Cabral & Sabine Mann & Roderick MacKinnon, 2001. "Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors," Nature, Nature, vol. 411(6838), pages 657-661, June.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6838:d:10.1038_35079500
    DOI: 10.1038/35079500
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35079500
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35079500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiangtao Zhang & Yiqiang Shi & Junping Fan & Huiwen Chen & Zhanyi Xia & Bo Huang & Juquan Jiang & Jianke Gong & Zhuo Huang & Daohua Jiang, 2022. "N-type fast inactivation of a eukaryotic voltage-gated sodium channel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Paul J Pfaffinger, 2013. "A Conserved Pre-Block Interaction Motif Regulates Potassium Channel Activation and N-Type Inactivation," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-14, November.
    3. Matthew R Skerritt & Donald L Campbell, 2008. "Non-Native R1 Substitution in the S4 Domain Uniquely Alters Kv4.3 Channel Gating," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-7, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6838:d:10.1038_35079500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.