IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v409y2001i6821d10.1038_35055553.html
   My bibliography  Save this article

Neurons derived from radial glial cells establish radial units in neocortex

Author

Listed:
  • Stephen C. Noctor

    (Departments of Neurology)

  • Alexander C. Flint

    (Departments of Neurology)

  • Tamily A. Weissman

    (Center for Neurobiology and Behavior, Columbia University College of Physicians & Surgeons)

  • Ryan S. Dammerman

    (Center for Neurobiology and Behavior, Columbia University College of Physicians & Surgeons)

  • Arnold R. Kriegstein

    (Departments of Neurology
    Departments of Pathology
    Center for Neurobiology and Behavior, Columbia University College of Physicians & Surgeons)

Abstract

The neocortex of the adult brain consists of neurons and glia that are generated by precursor cells of the embryonic ventricular zone. In general, glia are generated after neurons during development1, but radial glia are an exception to this rule. Radial glia are generated before neurogenesis and guide neuronal migration2. Radial glia are mitotically active throughout neurogenesis3, and disappear or become astrocytes when neuronal migration is complete4,5. Although the lineage relationships of cortical neurons and glia have been explored6,7, the clonal relationship of radial glia to other cortical cells remains unknown. It has been suggested that radial glia may be neuronal precursors5,8,9,10, but this has not been demonstrated in vivo. We have used a retroviral vector encoding enhanced green fluorescent protein to label precursor cells in vivo and have examined clones 1–3 days later using morphological, immunohistochemical and electrophysiological techniques. Here we show that clones consist of mitotic radial glia and postmitotic neurons, and that neurons migrate along clonally related radial glia. Time-lapse images show that proliferative radial glia generate neurons. Our results support the concept that a lineage relationship between neurons and proliferative radial glia may underlie the radial organization of neocortex.

Suggested Citation

  • Stephen C. Noctor & Alexander C. Flint & Tamily A. Weissman & Ryan S. Dammerman & Arnold R. Kriegstein, 2001. "Neurons derived from radial glial cells establish radial units in neocortex," Nature, Nature, vol. 409(6821), pages 714-720, February.
  • Handle: RePEc:nat:nature:v:409:y:2001:i:6821:d:10.1038_35055553
    DOI: 10.1038/35055553
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35055553
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35055553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Frumkin & Adam Wasserstrom & Shai Kaplan & Uriel Feige & Ehud Shapiro, 2005. "Genomic Variability within an Organism Exposes Its Cell Lineage Tree," PLOS Computational Biology, Public Library of Science, vol. 1(5), pages 1-13, October.
    2. Soraia Barão & Yijun Xu & José P. Llongueras & Rachel Vistein & Loyal Goff & Kristina J. Nielsen & Byoung-Il Bae & Richard S. Smith & Christopher A. Walsh & Genevieve Stein-O’Brien & Ulrich Müller, 2024. "Conserved transcriptional regulation by BRN1 and BRN2 in neocortical progenitors drives mammalian neural specification and neocortical expansion," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:409:y:2001:i:6821:d:10.1038_35055553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.