IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v407y2000i6802d10.1038_35030006.html
   My bibliography  Save this article

Structure of the 30S ribosomal subunit

Author

Listed:
  • Brian T. Wimberly

    (MRC Laboratory of Molecular Biology)

  • Ditlev E. Brodersen

    (MRC Laboratory of Molecular Biology)

  • William M. Clemons

    (MRC Laboratory of Molecular Biology
    University of Utah School of Medicine)

  • Robert J. Morgan-Warren

    (MRC Laboratory of Molecular Biology)

  • Andrew P. Carter

    (MRC Laboratory of Molecular Biology)

  • Clemens Vonrhein

    (Global Phasing Ltd., Sheraton House)

  • Thomas Hartsch

    (Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen)

  • V. Ramakrishnan

    (MRC Laboratory of Molecular Biology)

Abstract

Genetic information encoded in messenger RNA is translated into protein by the ribosome, which is a large nucleoprotein complex comprising two subunits, denoted 30S and 50S in bacteria. Here we report the crystal structure of the 30S subunit from Thermus thermophilus, refined to 3 Å resolution. The final atomic model rationalizes over four decades of biochemical data on the ribosome, and provides a wealth of information about RNA and protein structure, protein–RNA interactions and ribosome assembly. It is also a structural basis for analysis of the functions of the 30S subunit, such as decoding, and for understanding the action of antibiotics. The structure will facilitate the interpretation in molecular terms of lower resolution structural data on several functional states of the ribosome from electron microscopy and crystallography.

Suggested Citation

  • Brian T. Wimberly & Ditlev E. Brodersen & William M. Clemons & Robert J. Morgan-Warren & Andrew P. Carter & Clemens Vonrhein & Thomas Hartsch & V. Ramakrishnan, 2000. "Structure of the 30S ribosomal subunit," Nature, Nature, vol. 407(6802), pages 327-339, September.
  • Handle: RePEc:nat:nature:v:407:y:2000:i:6802:d:10.1038_35030006
    DOI: 10.1038/35030006
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35030006
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35030006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebecca S Mathew-Fenn & Rhiju Das & Joshua A Silverman & Peter A Walker & Pehr A B Harbury, 2008. "A Molecular Ruler for Measuring Quantitative Distance Distributions," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-9, October.
    2. Simon A. Fromm & Kate M. O’Connor & Michael Purdy & Pramod R. Bhatt & Gary Loughran & John F. Atkins & Ahmad Jomaa & Simone Mattei, 2023. "The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mariam Jaafar & Julia Contreras & Carine Dominique & Sara Martín-Villanueva & Régine Capeyrou & Patrice Vitali & Olga Rodríguez-Galán & Carmen Velasco & Odile Humbert & Nicholas J. Watkins & Eduardo V, 2021. "Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Meagan C Small & Pedro Lopes & Rodrigo B Andrade & Alexander D MacKerell Jr, 2013. "Impact of Ribosomal Modification on the Binding of the Antibiotic Telithromycin Using a Combined Grand Canonical Monte Carlo/Molecular Dynamics Simulation Approach," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:407:y:2000:i:6802:d:10.1038_35030006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.