IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v403y2000i6771d10.1038_35001556.html
   My bibliography  Save this article

Temperature trends over the past five centuries reconstructed from borehole temperatures

Author

Listed:
  • Shaopeng Huang

    (The University of Michigan)

  • Henry N. Pollack

    (The University of Michigan)

  • Po-Yu Shen

    (The University of Western Ontario)

Abstract

For an accurate assessment of the relative roles of natural variability and anthropogenic influence in the Earth's climate, reconstructions of past temperatures from the pre-industrial as well as the industrial period are essential. But instrumental records are typically available for no more than the past 150 years. Therefore reconstructions of pre-industrial climate rely principally on traditional climate proxy records1,2,3,4,5, each with particular strengths and limitations in representing climatic variability. Subsurface temperatures comprise an independent archive of past surface temperature changes that is complementary to both the instrumental record and the climate proxies. Here we use present-day temperatures in 616 boreholes from all continents except Antarctica to reconstruct century-long trends in temperatures over the past 500 years at global, hemispheric and continental scales. The results confirm the unusual warming of the twentieth century revealed by the instrumental record6, but suggest that the cumulative change over the past five centuries amounts to about 1 K, exceeding recent estimates from conventional climate proxies2,3,4,5. The strength of temperature reconstructions from boreholes lies in the detection of long-term trends, complementary to conventional climate proxies, but to obtain a complete picture of past warming, the differences between the approaches need to be investigated in detail.

Suggested Citation

  • Shaopeng Huang & Henry N. Pollack & Po-Yu Shen, 2000. "Temperature trends over the past five centuries reconstructed from borehole temperatures," Nature, Nature, vol. 403(6771), pages 756-758, February.
  • Handle: RePEc:nat:nature:v:403:y:2000:i:6771:d:10.1038_35001556
    DOI: 10.1038/35001556
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35001556
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35001556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxim Ogurtsov & Markus Lindholm, 2006. "Uncertainties in Assessing Global Warming during the 20th Century: Disagreement between Key Data Sources," Energy & Environment, , vol. 17(5), pages 685-706, September.
    2. Fenske, James & Kala, Namrata, 2012. "Climate, ecosystem resilience and the slave trade," MPRA Paper 38398, University Library of Munich, Germany.
    3. Xiaoxue Yan & Xiaolin Wang & Guicheng Xue & Ruoxi Yuan & Feng Yang, 2024. "Terrestrial Heat Flow and Lithospheric Thermal Structure Characteristics in Nanping City of Hainan," Energies, MDPI, vol. 17(19), pages 1-17, September.
    4. Willie Soon & Sallie Baliunas & Craig Idso & Sherwood Idso & David R. Legates, 2003. "Reconstructing Climatic and Environmental Changes of the Past 1000 Years: A Reappraisal," Energy & Environment, , vol. 14(2-3), pages 233-296, May.
    5. Fenske, James & Kala, Namrata, 2015. "Climate and the slave trade," Journal of Development Economics, Elsevier, vol. 112(C), pages 19-32.
    6. Susanne A. Benz & Kathrin Menberg & Peter Bayer & Barret L. Kurylyk, 2022. "Shallow subsurface heat recycling is a sustainable global space heating alternative," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yoshitaka Sakata & Yuma Akeyama & Takao Katsura & Katsunori Nagano, 2023. "Evaluating Long-Term Performance of a Residential Ground-Source Heat Pump System under Climate Change in Cold and Warm Cities of Japan," Energies, MDPI, vol. 16(6), pages 1-16, March.
    8. Gregorio Moreno-Rueda & Juan Pleguezuelos & Esmeralda Alaminos, 2009. "Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus," Climatic Change, Springer, vol. 92(1), pages 235-242, January.
    9. Ping Li & Nina Omani & Indrajeet Chaubey & Xiaomei Wei, 2017. "Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin," IJERPH, MDPI, vol. 14(5), pages 1-23, May.
    10. Bryan Shuman, 2012. "Recent Wyoming temperature trends, their drivers, and impacts in a 14,000-year context," Climatic Change, Springer, vol. 112(2), pages 429-447, May.
    11. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    12. Luminda Gunawardhana & So Kazama & Saeki Kawagoe, 2011. "Impact of Urbanization and Climate Change on Aquifer Thermal Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3247-3276, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:403:y:2000:i:6771:d:10.1038_35001556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.