IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4824-d1486427.html
   My bibliography  Save this article

Terrestrial Heat Flow and Lithospheric Thermal Structure Characteristics in Nanping City of Hainan

Author

Listed:
  • Xiaoxue Yan

    (Hainan Key Laboratory of Marine Geological Resources and Environment, Haikou 570206, China
    Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center for Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Xiaolin Wang

    (Hainan Key Laboratory of Marine Geological Resources and Environment, Haikou 570206, China
    Hainan Geological Survey Institute, Haikou 570206, China)

  • Guicheng Xue

    (Hainan Key Laboratory of Marine Geological Resources and Environment, Haikou 570206, China
    Hainan Geological Survey Institute, Haikou 570206, China)

  • Ruoxi Yuan

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center for Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Feng Yang

    (Hainan Key Laboratory of Marine Geological Resources and Environment, Haikou 570206, China
    Hainan Geological Survey Institute, Haikou 570206, China)

Abstract

The Nanping geothermal field in Hainan is situated within the Wuzhi Mountain fold belt of the South China fold system based on its geotectonic units. Although there is abundant surface heat detected and widespread distribution of Late Mesozoic granite in the area, the geological background of geothermal resources remains unclear. In this article, we collected core samples from boreholes within the Nanping geothermal field to conduct testing and analysis on rock thermal conductivity and heat-production rate. By combining these results with temperature logging data, we discuss a method for diterming the heat flow background of convective geothermal system. Furthermore, the study analyzed the geothermal flux and deep thermal structure of the research area. The results demonstrate that the average radioactive heat production rate of the Baocheng rock mass in the study area is 3.16 μW/m³, primarily attributed to the decay heat of Th and U, while the heat contribution of K is negligible. The thermal conductivity values of the rocks are relatively high, ranging from 2.29 to 3.75 W/(mK), slightly exceeding the average thermal conductivity of the upper crust. The study area represents a typical convective geothermal field influenced by groundwater convection, exhibiting a high geothermal temperature gradient. Using the groundwater-correction method, the geothermal flux in the study area is calculated to be 89–108.27 mW/m², of which the thermal conduction component is 73.17 mW/m² and the convective component is 15.83–35.1 mW/m². Among these components, heat generated from radioactive decay of crustal radioactive elements contributes 35.44 mW/m² to thermal conduction, while deep mantle conduction accounts for a heat flux is 37.73 mW/m², with a ratio of 1:1.07 between them. The difference between crustal and mantle heat fluxes is minimal in this region, indicating an approximation towards a “crust-mantle heat source balance zone”. Furthermore, the thickness of the “hot” lithosphere in the study area ranges from 42 to 46 km, indicating significant characteristics of extension-thinning.

Suggested Citation

  • Xiaoxue Yan & Xiaolin Wang & Guicheng Xue & Ruoxi Yuan & Feng Yang, 2024. "Terrestrial Heat Flow and Lithospheric Thermal Structure Characteristics in Nanping City of Hainan," Energies, MDPI, vol. 17(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4824-:d:1486427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaopeng Huang & Henry N. Pollack & Po-Yu Shen, 2000. "Temperature trends over the past five centuries reconstructed from borehole temperatures," Nature, Nature, vol. 403(6771), pages 756-758, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanne A. Benz & Kathrin Menberg & Peter Bayer & Barret L. Kurylyk, 2022. "Shallow subsurface heat recycling is a sustainable global space heating alternative," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Luminda Gunawardhana & So Kazama & Saeki Kawagoe, 2011. "Impact of Urbanization and Climate Change on Aquifer Thermal Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3247-3276, October.
    3. James Fenske & Namrata Kala, 2012. "Climate, ecosystem resilience and the slave trade," CSAE Working Paper Series 2012-23, Centre for the Study of African Economies, University of Oxford.
    4. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    5. Maxim Ogurtsov & Markus Lindholm, 2006. "Uncertainties in Assessing Global Warming during the 20th Century: Disagreement between Key Data Sources," Energy & Environment, , vol. 17(5), pages 685-706, September.
    6. Yoshitaka Sakata & Yuma Akeyama & Takao Katsura & Katsunori Nagano, 2023. "Evaluating Long-Term Performance of a Residential Ground-Source Heat Pump System under Climate Change in Cold and Warm Cities of Japan," Energies, MDPI, vol. 16(6), pages 1-16, March.
    7. Bryan Shuman, 2012. "Recent Wyoming temperature trends, their drivers, and impacts in a 14,000-year context," Climatic Change, Springer, vol. 112(2), pages 429-447, May.
    8. Willie Soon & Sallie Baliunas & Craig Idso & Sherwood Idso & David R. Legates, 2003. "Reconstructing Climatic and Environmental Changes of the Past 1000 Years: A Reappraisal," Energy & Environment, , vol. 14(2-3), pages 233-296, May.
    9. Fenske, James & Kala, Namrata, 2015. "Climate and the slave trade," Journal of Development Economics, Elsevier, vol. 112(C), pages 19-32.
    10. Gregorio Moreno-Rueda & Juan Pleguezuelos & Esmeralda Alaminos, 2009. "Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus," Climatic Change, Springer, vol. 92(1), pages 235-242, January.
    11. Ping Li & Nina Omani & Indrajeet Chaubey & Xiaomei Wei, 2017. "Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin," IJERPH, MDPI, vol. 14(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4824-:d:1486427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.