IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v399y1999i6734d10.1038_20694.html
   My bibliography  Save this article

Signals from the reproductive system regulate the lifespan of C. elegans

Author

Listed:
  • Honor Hsin

    (University of California at San Francisco)

  • Cynthia Kenyon

    (University of California at San Francisco)

Abstract

Understanding how the ageing process is regulated is a fascinating and fundamental problem in biology. Here we demonstrate that signals from the reproductive system influence the lifespan of the nematode Caenorhabditis elegans. If the cells that give rise to the germ line are killed with a laser microbeam, the lifespan of the animal is extended. Our findings suggest that germline signals act by modulating the activity of an insulin/IGF-1 (insulin-like growth factor) pathway that is known to regulate the ageing of this organism. Mutants with reduced activity of the insulin/IGF-1-receptor homologue DAF-2 have been shown to live twice as long as normal1,2,3, and their longevity requires the activity of DAF-16, a member of the forkhead/winged-helix family of transcriptional regulators1,2,4,5. We find that, in order for germline ablation to extend lifespan, DAF-16 is required, as well as a putative nuclear hormone receptor, DAF-12 (refs 6, 7). In addition, our findings suggest that signals from the somatic gonad also influence ageing, and that this effect requires DAF-2 activity. Together, our findings imply that the C. elegans insulin/IGF-1 system integrates multiple signals to define the animal's rate of ageing. This study demonstrates an inherent relationship between the reproductive state of this animal and its lifespan, and may have implications for the co-evolution of reproductive capability and longevity.

Suggested Citation

  • Honor Hsin & Cynthia Kenyon, 1999. "Signals from the reproductive system regulate the lifespan of C. elegans," Nature, Nature, vol. 399(6734), pages 362-366, May.
  • Handle: RePEc:nat:nature:v:399:y:1999:i:6734:d:10.1038_20694
    DOI: 10.1038/20694
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/20694
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/20694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zi Wang & Lina Zou & Yiyan Zhang & Mengnan Zhu & Shuxian Zhang & Di Wu & Jianfeng Lan & Xiao Zang & Qi Wang & Hanxin Zhang & Zixing Wu & Huanhu Zhu & Di Chen, 2023. "ACS-20/FATP4 mediates the anti-ageing effect of dietary restriction in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Carlos A. Vergani-Junior & Raíssa De P. Moro & Silas Pinto & Evandro A. De-Souza & Henrique Camara & Deisi L. Braga & Guilherme Tonon-da-Silva & Thiago L. Knittel & Gabriel P. Ruiz & Raissa G. Ludwig , 2024. "An Intricate Network Involving the Argonaute ALG-1 Modulates Organismal Resistance to Oxidative Stress," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Nan Wu & Yi-Cheng Ma & Xin-Qian Gong & Pei-Ji Zhao & Yong-Jian Jia & Qiu Zhao & Jia-Hong Duan & Cheng-Gang Zou, 2023. "The metabolite alpha-ketobutyrate extends lifespan by promoting peroxisomal function in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Debbie McLaggan & Maria R Amezaga & Eleni Petra & Andrew Frost & Elizabeth I Duff & Stewart M Rhind & Paul A Fowler & L Anne Glover & Cristina Lagido, 2012. "Impact of Sublethal Levels of Environmental Pollutants Found in Sewage Sludge on a Novel Caenorhabditis elegans Model Biosensor," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-12, October.
    5. Shengjie Fan & Yingxuan Yan & Ying Xia & Zhenyu Zhou & Lingling Luo & Mengnan Zhu & Yongli Han & Deqiang Yao & Lijun Zhang & Minglv Fang & Lina Peng & Jing Yu & Ying Liu & Xiaoyan Gao & Huida Guan & H, 2023. "Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    6. Carina C. Kern & Shivangi Srivastava & Marina Ezcurra & Kuei Ching Hsiung & Nancy Hui & StJohn Townsend & Dominik Maczik & Bruce Zhang & Victoria Tse & Viktoras Konstantellos & Jürg Bähler & David Gem, 2023. "C. elegans ageing is accelerated by a self-destructive reproductive programme," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:399:y:1999:i:6734:d:10.1038_20694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.