IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v394y1998i6693d10.1038_29064.html
   My bibliography  Save this article

Selfish genes: a green beard in the red fire ant

Author

Listed:
  • Laurent Keller

    (Institute of Zoology and Animal Ecology, University of Lausanne, Bâtiment de Biologie)

  • Kenneth G. Ross

    (University of Georgia)

Abstract

A ‘green-beard’ gene is defined as a gene that causes a phenotypic effect (such as the presence of a green beard or any other conspicuous feature), allows the bearer of this feature to recognize it in other individuals, and causes the bearer to behave differently towards other individuals depending on whether or not they possess the feature1,2,3. Such genes have been proposed on theoretical grounds to be agents mediating both altruism and intragenomic conflicts1,2, but until now few, if any, of these genes have been identified4,5. Here we provide evidence of a green-beard gene in the red imported fire ant, Solenopsis invicta. In polygyne (multiple-queen) colonies, all egg-laying queens are Bb heterozygotes at the locus Gp-9 (ref. 6). Previous studies suggested that bb females die prematurely from intrinsic causes6; we now show that BB queens initiating reproduction are killed by workers, and that it is primarily Bb rather than BB workers that are responsible for these executions. This implies that allele Gp-9b is linked to a green-beard allele that preferentially induces workers bearing the allele to kill all queens that do not bear it. Workers appear to distinguish BB from Bb queens on the basis of a transferable odour cue.

Suggested Citation

  • Laurent Keller & Kenneth G. Ross, 1998. "Selfish genes: a green beard in the red fire ant," Nature, Nature, vol. 394(6693), pages 573-575, August.
  • Handle: RePEc:nat:nature:v:394:y:1998:i:6693:d:10.1038_29064
    DOI: 10.1038/29064
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/29064
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/29064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Friedrich, Thomas, 2023. "A positive net profit strategy and a pure substrate transfer strategy are both necessary for an ensemble to succeed in the presence of a fixed cost," MPRA Paper 117108, University Library of Munich, Germany.
    2. İlker Yıldırım & Pınar Yolum, 2009. "Hybrid models for achieving and maintaining cooperative symbiotic groups," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 8(2), pages 243-258, December.
    3. Aaron Foote & Maryam Gooyabadi & Nikhil Addleman, 2023. "Factors in Learning Dynamics Influencing Relative Strengths of Strategies in Poker Simulation," Games, MDPI, vol. 14(6), pages 1-16, November.
    4. Ishii, Ryosuke, 2012. "Observable Actions," ビジネス創造センターディスカッション・ペーパー (Discussion papers of the Center for Business Creation) 10252/4776, Otaru University of Commerce.
    5. Zhang, Hong & Ye, Hang, 2016. "Role of perception cost in tag-mediated cooperation," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 76-89.
    6. Hadzibeganovic, Tarik & Stauffer, Dietrich & Han, Xiao-Pu, 2018. "Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 676-690.
    7. Zhang, Hong, 2023. "Evolution of cooperation with tag-based expulsion in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:394:y:1998:i:6693:d:10.1038_29064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.