IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v389y1997i6651d10.1038_39335.html
   My bibliography  Save this article

Protection from obesity-induced insulin resistance in mice lacking TNF-α function

Author

Listed:
  • K. Teoman Uysal

    (Harvard School of Public Health)

  • Sarah M. Wiesbrock

    (Harvard School of Public Health)

  • Michael W. Marino

    (Ludwig Institute for Cancer Research, Memorial Sloan Kettering Cancer Center)

  • Gkhan S. Hotamisligil

    (Harvard School of Public Health)

Abstract

Obesity is highly associated with insulin resistance and is the biggest risk factor for non-insulin-dependent diabetes mellitus1,2,3. The molecular basis of this common syndrome, however, is poorly understood. It has been suggested that tumour necrosis factor (TNF)-α is a candidate mediator of insulin resistance in obesity, as it is overexpressed in the adipose tissues of rodents and humans4,5,6,7,8,9,10 and it blocks the action of insulin in cultured cells and whole animals10,11,12,13,14. To investigate the role of TNF-α in obesity and insulin resistance, we have generated obese mice with a targeted null mutation in the gene encoding TNF-α and those encoding the two receptors for TNF-α. The absence of TNF-α resulted in significantly improved insulin sensitivity in both diet-induced obesity and that resulting for the ob/ob model of obesity. The TNFα-deficient obese mice had lower levels of circulating free fatty acids, and were protected from the obesity-related reduction in the insulin receptor signalling in muscle and fat tissues. These results indicate that TNF-α is an important mediator of insulin resistance in obesity through its effects on several important sites of insulin action.

Suggested Citation

  • K. Teoman Uysal & Sarah M. Wiesbrock & Michael W. Marino & Gkhan S. Hotamisligil, 1997. "Protection from obesity-induced insulin resistance in mice lacking TNF-α function," Nature, Nature, vol. 389(6651), pages 610-614, October.
  • Handle: RePEc:nat:nature:v:389:y:1997:i:6651:d:10.1038_39335
    DOI: 10.1038/39335
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/39335
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/39335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong-Keon Lee & Taesam Kim & Junyoung Byeon & Minsik Park & Suji Kim & Joohwan Kim & Seunghwan Choi & Gihwan Lee & Chanin Park & Keun Woo Lee & Yong Jung Kwon & Jeong-Hyung Lee & Young-Guen Kwon & You, 2022. "REDD1 promotes obesity-induced metabolic dysfunction via atypical NF-κB activation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Yeon A. Kim & Joon Beom Park & Min Seok Woo & Sang Yeob Lee & Hye Young Kim & Young Hyun Yoo, 2019. "Persistent Organic Pollutant-Mediated Insulin Resistance," IJERPH, MDPI, vol. 16(3), pages 1-14, February.
    3. Alexander V. Sergeev & David O. Carpenter, 2011. "Increase in Metabolic Syndrome-Related Hospitalizations in Relation to Environmental Sources of Persistent Organic Pollutants," IJERPH, MDPI, vol. 8(3), pages 1-15, March.
    4. Cailan Lindsay Feingold & Abbas Smiley, 2022. "Healthy Sleep Every Day Keeps the Doctor Away," IJERPH, MDPI, vol. 19(17), pages 1-35, August.
    5. Shuai Yan & Anna Santoro & Micah J. Niphakis & Antonio M. Pinto & Christopher L. Jacobs & Rasheed Ahmad & Radu M. Suciu & Bryan R. Fonslow & Rachel A. Herbst-Graham & Nhi Ngo & Cassandra L. Henry & Dy, 2024. "Inflammation causes insulin resistance in mice via interferon regulatory factor 3 (IRF3)-mediated reduction in FAHFA levels," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:389:y:1997:i:6651:d:10.1038_39335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.