IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v7y2024i8d10.1038_s41893-024-01395-7.html
   My bibliography  Save this article

Sustainable urban transformations based on integrated microgrid designs

Author

Listed:
  • Sadeeb S. Ottenburger

    (Karlsruhe Institute of Technology (KIT))

  • Rob Cox

    (University of North Carolina at Charlotte (UNCC))

  • Badrul H. Chowdhury

    (University of North Carolina at Charlotte (UNCC))

  • Dmytro Trybushnyi

    (Karlsruhe Institute of Technology (KIT))

  • Ehmedi Al Omar

    (Karlsruhe Institute of Technology (KIT))

  • Sujay A. Kaloti

    (University of North Carolina at Charlotte (UNCC))

  • Ulrich Ufer

    (Karlsruhe Institute of Technology (KIT))

  • Witold-R. Poganietz

    (Karlsruhe Institute of Technology (KIT))

  • Weijia Liu

    (National Renewable Energy Laboratory (NREL))

  • Evgenia Deines

    (Karlsruhe Institute of Technology (KIT))

  • Tim O. Müller

    (Karlsruhe Institute of Technology (KIT))

  • Stella Möhrle

    (Karlsruhe Institute of Technology (KIT))

  • Wolfgang Raskob

    (Karlsruhe Institute of Technology (KIT))

Abstract

The impacts of natural hazards on infrastructure, enhanced by climate change, are increasingly more severe emphasizing the necessity of resilient energy grids. Microgrids, tailored energy systems for specific neighbourhoods and districts, play a pivotal role in sustaining energy supply during main grid outages. These solutions not only mitigate economic losses and well-being disruptions against escalating hazards but also enhance city resilience in alignment with Sustainable Development Goal (SDG) 11. However, disregarding socioeconomic factors in defining microgrid boundaries risks perpetuating inequalities and impeding progress towards other SDG 11 targets, including fair democratic participation. Our approach integrates social and technical indicators to bolster urban microgrid planning. Through a case study in a US county, we illustrate how integrated microgrid planning effectively intertwines urban resilience, well-being and equity while promoting sustainable development. This study underscores the importance of integrated microgrid planning for sustainable and resilient urban transformation amid environmental and societal challenges.

Suggested Citation

  • Sadeeb S. Ottenburger & Rob Cox & Badrul H. Chowdhury & Dmytro Trybushnyi & Ehmedi Al Omar & Sujay A. Kaloti & Ulrich Ufer & Witold-R. Poganietz & Weijia Liu & Evgenia Deines & Tim O. Müller & Stella , 2024. "Sustainable urban transformations based on integrated microgrid designs," Nature Sustainability, Nature, vol. 7(8), pages 1067-1079, August.
  • Handle: RePEc:nat:natsus:v:7:y:2024:i:8:d:10.1038_s41893-024-01395-7
    DOI: 10.1038/s41893-024-01395-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-024-01395-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-024-01395-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sören Becker & James Angel & Matthias Naumann, 2020. "Energy democracy as the right to the city: Urban energy struggles in Berlin and London," Environment and Planning A, , vol. 52(6), pages 1093-1111, September.
    2. Day, Rosie & Walker, Gordon & Simcock, Neil, 2016. "Conceptualising energy use and energy poverty using a capabilities framework," Energy Policy, Elsevier, vol. 93(C), pages 255-264.
    3. Stephen R. Carpenter & Kenneth J. Arrow & Scott Barrett & Reinette Biggs & William A. Brock & Anne-Sophie Crépin & Gustav Engström & Carl Folke & Terry P. Hughes & Nils Kautsky & Chuan-Zhong Li & Geof, 2012. "General Resilience to Cope with Extreme Events," Sustainability, MDPI, vol. 4(12), pages 1-12, November.
    4. Susan Spierre Clark & Thomas P. Seager & Mikhail V. Chester, 2018. "A capabilities approach to the prioritization of critical infrastructure," Environment Systems and Decisions, Springer, vol. 38(3), pages 339-352, September.
    5. Yang, Weijia & Sparrow, Sarah N. & Ashtine, Masaō & Wallom, David C.H. & Morstyn, Thomas, 2022. "Resilient by design: Preventing wildfires and blackouts with microgrids," Applied Energy, Elsevier, vol. 313(C).
    6. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    7. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    8. Maryia Markhvida & Brian Walsh & Stephane Hallegatte & Jack Baker, 2020. "Quantification of disaster impacts through household well-being losses," Nature Sustainability, Nature, vol. 3(7), pages 538-547, July.
    9. Jeffrey D. Sachs & Guido Schmidt-Traub & Mariana Mazzucato & Dirk Messner & Nebojsa Nakicenovic & Johan Rockström, 2019. "Six Transformations to achieve the Sustainable Development Goals," Nature Sustainability, Nature, vol. 2(9), pages 805-814, September.
    10. Persson, Mikael, 2015. "Education and Political Participation," British Journal of Political Science, Cambridge University Press, vol. 45(3), pages 689-703, July.
    11. Jennifer S Dargin & Ali Mostafavi, 2020. "Human-centric infrastructure resilience: Uncovering well-being risk disparity due to infrastructure disruptions in disasters," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-29, June.
    12. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    13. Blanka Vitéz & Saskia Lavrijssen, 2020. "The Energy Transition: Democracy, Justice and Good Regulation of the Heat Market," Energies, MDPI, vol. 13(5), pages 1-24, March.
    14. Ajoulabadi, Ata & Ravadanegh, Sajad Najafi & Behnam Mohammadi-Ivatloo,, 2020. "Flexible scheduling of reconfigurable microgrid-based distribution networks considering demand response program," Energy, Elsevier, vol. 196(C).
    15. Polinpapilinho F. Katina & Patrick T. Hester, 2013. "Systemic determination of infrastructure criticality," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 9(3), pages 211-225.
    16. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    17. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    19. Julia Amann & Joanna Sleigh, 2021. "Too Vulnerable to Involve? Challenges of Engaging Vulnerable Groups in the Co-production of Public Services through Research," International Journal of Public Administration, Taylor & Francis Journals, vol. 44(9), pages 715-727, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Len Fisher & Anders Sandberg, 2022. "A Safe Governance Space for Humanity: Necessary Conditions for the Governance of Global Catastrophic Risks," Global Policy, London School of Economics and Political Science, vol. 13(5), pages 792-807, November.
    3. Ye, Yuxuan & Zhu, Rui & Yan, Jinyue & Lu, Lin & Wong, Man Sing & Luo, Wei & Chen, Min & Zhang, Fan & You, Linlin & Wang, Yafei & Qin, Zheng, 2023. "Planning the installation of building-integrated photovoltaic shading devices: A GIS-based spatiotemporal analysis and optimization approach," Renewable Energy, Elsevier, vol. 216(C).
    4. Ossi Heino & Annina Takala & Pirjo Jukarainen & Joanna Kalalahti & Tuula Kekki & Pekka Verho, 2019. "Critical Infrastructures: The Operational Environment in Cases of Severe Disruption," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    5. Li, Jianglong & Ho, Mun Sing & Xie, Chunping & Stern, Nicholas, 2022. "China's flexibility challenge in achieving carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Susan Spierre Clark & Thomas P. Seager & Mikhail V. Chester, 2018. "A capabilities approach to the prioritization of critical infrastructure," Environment Systems and Decisions, Springer, vol. 38(3), pages 339-352, September.
    7. Johan Rockström & Albert V. Norström & Nathanial Matthews & Reinette (Oonsie) Biggs & Carl Folke & Ameil Harikishun & Saleemul Huq & Nisha Krishnan & Lila Warszawski & Deon Nel, 2023. "Shaping a resilient future in response to COVID-19," Nature Sustainability, Nature, vol. 6(8), pages 897-907, August.
    8. Potrč, Sanja & Nemet, Andreja & Čuček, Lidija & Varbanov, Petar Sabev & Kravanja, Zdravko, 2022. "Synthesis of a regenerative energy system – beyond carbon emissions neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Rao, B. Bhaskara, 2010. "Estimates of the steady state growth rates for selected Asian countries with an extended Solow model," Economic Modelling, Elsevier, vol. 27(1), pages 46-53, January.
    10. Raouf Boucekkine & Fernando Del Río & Omar Licandro, 2003. "Embodied Technological Change, Learning‐by‐doing and the Productivity Slowdown," Scandinavian Journal of Economics, Wiley Blackwell, vol. 105(1), pages 87-98, March.
    11. Abida Hafeez & Karim Bux Shah Syed & Fiza Qureshi, 2019. "Exploring the Relationship between Government R & D Expenditures and Economic Growth in a Global Perspective: A PMG Estimation Approach," International Business Research, Canadian Center of Science and Education, vol. 12(4), pages 163-174, April.
    12. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    13. Agathe Gilain & Pascal Le Masson & Benoit Weil, 2018. "Managing Learning Curves In The Unknown: From ‘Learning By Doing’ To ‘Learning By Designing’," Post-Print hal-01900961, HAL.
    14. Gilberto Tadeu Lima, 2000. "Market concentration and technological innovation in a dynamic model of growth and distribution," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 53(215), pages 447-475.
    15. Joseph Stiglitz, 2018. "From manufacturing-led export growth to a twenty-first-century inclusive growth strategy: Explaining the demise of a successful growth model and what to do about it," WIDER Working Paper Series 176, World Institute for Development Economic Research (UNU-WIDER).
    16. Heather McMillen & Lindsay K. Campbell & Erika S. Svendsen & Renae Reynolds, 2016. "Recognizing Stewardship Practices as Indicators of Social Resilience: In Living Memorials and in a Community Garden," Sustainability, MDPI, vol. 8(8), pages 1-26, August.
    17. Mikhail Y. Afanasyev & Alexander V. Kudrov, 2021. "Economic Complexity, Embedding Degree and Adjacent Diversity of the Regional Economies," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 17(2), pages 7-22.
    18. van de Klundert, T.C.M.J. & Smulders, J.A., 1993. "Reconstructing growth theory : A survey," Other publications TiSEM ed4275fb-b14f-4175-a63f-6, Tilburg University, School of Economics and Management.
    19. Stefanie Stantcheva, 2020. "Dynamic Taxation," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 801-831, August.
    20. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:7:y:2024:i:8:d:10.1038_s41893-024-01395-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.