IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v7y2024i8d10.1038_s41893-024-01376-w.html
   My bibliography  Save this article

Ending groundwater overdraft without affecting food security

Author

Listed:
  • Nicostrato Perez

    (International Food Policy Research Institute)

  • Vartika Singh

    (Humboldt Universitat-zu Berlin
    International Food Policy Research Institute
    Indian Institute of Management)

  • Claudia Ringler

    (International Food Policy Research Institute)

  • Hua Xie

    (International Food Policy Research Institute)

  • Tingju Zhu

    (Zhejiang University)

  • Edwin H. Sutanudjaja

    (Utrecht University)

  • Karen G. Villholth

    (Water Cycle Innovation)

Abstract

Groundwater development is key to accelerating agricultural growth and to achieving food security in a climate crisis. However, the rapid increase in groundwater exploitation over the past four decades has resulted in depletion and degradation, particularly in regions already facing acute water scarcity, with potential irreversible impacts for food security and economic prosperity. Using a climate–water–food systems modelling framework, we develop exploratory scenarios and find that halting groundwater depletion without complementary policy actions would adversely affect food production and trade, increase food prices and grow the number of people at risk of hunger by 26 million by 2050. Supportive policy interventions in food and water systems such as increasing the effective use of precipitation and investments in agricultural research and development could mitigate most negative effects of sustainable groundwater use on food security. In addition, changing preferences of high-income countries towards less-meat-based diets would marginally alleviate pressures on food price. To safeguard the ability of groundwater systems to realize water and food security objectives amidst climate challenges, comprehensive measures encompassing improved water management practices, advancements in seed technologies and appropriate institutions will be needed.

Suggested Citation

  • Nicostrato Perez & Vartika Singh & Claudia Ringler & Hua Xie & Tingju Zhu & Edwin H. Sutanudjaja & Karen G. Villholth, 2024. "Ending groundwater overdraft without affecting food security," Nature Sustainability, Nature, vol. 7(8), pages 1007-1017, August.
  • Handle: RePEc:nat:natsus:v:7:y:2024:i:8:d:10.1038_s41893-024-01376-w
    DOI: 10.1038/s41893-024-01376-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-024-01376-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-024-01376-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Blakeslee & Ram Fishman & Veena Srinivasan, 2020. "Way Down in the Hole: Adaptation to Long-Term Water Loss in Rural India," American Economic Review, American Economic Association, vol. 110(1), pages 200-224, January.
    2. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    3. Marco Springmann & Daniel Mason-D’Croz & Sherman Robinson & Keith Wiebe & H. Charles J. Godfray & Mike Rayner & Peter Scarborough, 2017. "Mitigation potential and global health impacts from emissions pricing of food commodities," Nature Climate Change, Nature, vol. 7(1), pages 69-74, January.
    4. Zaveri, Esha D. & Wrenn, Douglas H. & Fisher-Vanden, Karen, 2020. "The impact of water access on short-term migration in rural India," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    5. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    6. Claudia Ringler, 2021. "From Torrents to Trickles: Irrigation's Future in Africa and Asia," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 157-176, October.
    7. Christian Klassert & Jim Yoon & Katja Sigel & Bernd Klauer & Samer Talozi & Thibaut Lachaut & Philip Selby & Stephen Knox & Nicolas Avisse & Amaury Tilmant & Julien J. Harou & Daanish Mustafa & Josué , 2023. "Unexpected growth of an illegal water market," Nature Sustainability, Nature, vol. 6(11), pages 1406-1417, November.
    8. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Sulser, Timothy B. & Robertson, Richard D. & Zhu, Tingju & Gueneau, Arthur & Pitois, Gauthier & Rosegrant, Mark W., 2015. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3:," IFPRI discussion papers 1483, International Food Policy Research Institute (IFPRI).
    9. Debra Perrone & Scott Jasechko, 2019. "Deeper well drilling an unsustainable stopgap to groundwater depletion," Nature Sustainability, Nature, vol. 2(8), pages 773-782, August.
    10. Carole Dalin & Yoshihide Wada & Thomas Kastner & Michael J. Puma, 2017. "Groundwater depletion embedded in international food trade," Nature, Nature, vol. 543(7647), pages 700-704, March.
    11. Iman Haqiqi & Chris J. Perry & Thomas W. Hertel, 2022. "When the virtual water runs out: local and global responses to addressing unsustainable groundwater consumption," Water International, Taylor & Francis Journals, vol. 47(7), pages 1060-1084, October.
    12. Giordano, Mark & Villholth, Karen, 2007. "The agricultural groundwater revolution: opportunities and threats to development," IWMI Books, Reports H040039, International Water Management Institute.
    13. Ram Fishman, 2018. "Groundwater depletion limits the scope for adaptation to increased rainfall variability in India," Climatic Change, Springer, vol. 147(1), pages 195-209, March.
    14. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    15. M. O. Cuthbert & T. Gleeson & N. Moosdorf & K. M. Befus & A. Schneider & J. Hartmann & B. Lehner, 2019. "Global patterns and dynamics of climate–groundwater interactions," Nature Climate Change, Nature, vol. 9(2), pages 137-141, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    2. Shoumitro Chatterjee & Rohit Lamba & Esha D. Zaveri, 2024. "The role of farm subsidies in changing India’s water footprint," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Chinchu Mohan & Andrew W. Western & Madan Kumar Jha & Yongping Wei, 2022. "Global Assessment of Groundwater Stress Vis-à-Vis Sustainability of Irrigated Food Production," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    4. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    5. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Eric C. Edwards & Todd Guilfoos, 2021. "The Economics of Groundwater Governance Institutions across the Globe," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1571-1594, December.
    7. Sudatta Ray & Hemant K. Pullabhotla, 2023. "The changing impact of rural electrification on Indian agriculture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Aditi Mukherji, 2022. "Sustainable Groundwater Management in India Needs a Water‐Energy‐Food Nexus Approach," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(1), pages 394-410, March.
    9. Nadeem, Adeel Ahmad & Zha, Yuanyuan & Shi, Liangsheng & Zafar, Zeeshan & Ali, Shoaib & Zhang, Yufan & Altaf, Adnan Raza & Afzal, Muhammad & Zubair, Muhammad, 2023. "SAFER-ET based assessment of irrigation patterns and impacts on groundwater use in the central Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Foster, Timothy & Adhikari, Roshan & Adhikari, Subash & Justice, Scott & Tiwari, Baburam & Urfels, Anton & Krupnik, Timothy J., 2021. "Improving pumpset selection to support intensification of groundwater irrigation in the Eastern Indo-Gangetic Plains," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
    12. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    13. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    14. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    15. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    16. Wegmann, Johannes & Mußhoff, Oliver, 2019. "Groundwater management institutions in the face of rapid urbanization – Results of a framed field experiment in Bengaluru, India," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    17. Ameneh Mianabadi & Hashem Derakhshan & Kamran Davary & Seyed Majid Hasheminia & Markus Hrachowitz, 2020. "A Novel Idea for Groundwater Resource Management during Megadrought Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1743-1755, March.
    18. Yogita Sharma & Baljinder Kaur Sidana & Sunny Kumar & Samanpreet Kaur & Milkho Kaur Sekhon & Amrit Kaur Mahal & Sushant Mehan, 2023. "Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    19. Glendenning, C.J. & Vervoort, R.W., 2010. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India. Part 1: Field-scale impacts," Agricultural Water Management, Elsevier, vol. 98(2), pages 331-342, December.
    20. Merhawi GebreEgziabher & Scott Jasechko & Debra Perrone, 2022. "Widespread and increased drilling of wells into fossil aquifers in the USA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:7:y:2024:i:8:d:10.1038_s41893-024-01376-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.