IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v5y2022i5d10.1038_s41893-022-00851-6.html
   My bibliography  Save this article

Improving biodiversity protection through artificial intelligence

Author

Listed:
  • Daniele Silvestro

    (University of Fribourg
    Swiss Institute of Bioinformatics
    University of Gothenburg)

  • Stefano Goria

    (Thymia)

  • Thomas Sterner

    (University of Gothenburg)

  • Alexandre Antonelli

    (University of Gothenburg
    University of Oxford
    Royal Botanic Gardens)

Abstract

Over a million species face extinction, highlighting the urgent need for conservation policies that maximize the protection of biodiversity to sustain its manifold contributions to people’s lives. Here we present a novel framework for spatial conservation prioritization based on reinforcement learning that consistently outperforms available state-of-the-art software using simulated and empirical data. Our methodology, conservation area prioritization through artificial intelligence (CAPTAIN), quantifies the trade-off between the costs and benefits of area and biodiversity protection, allowing the exploration of multiple biodiversity metrics. Under a limited budget, our model protects significantly more species from extinction than areas selected randomly or naively (such as based on species richness). CAPTAIN achieves substantially better solutions with empirical data than alternative software, meeting conservation targets more reliably and generating more interpretable prioritization maps. Regular biodiversity monitoring, even with a degree of inaccuracy characteristic of citizen science surveys, further improves biodiversity outcomes. Artificial intelligence holds great promise for improving the conservation and sustainable use of biological and ecosystem values in a rapidly changing and resource-limited world.

Suggested Citation

  • Daniele Silvestro & Stefano Goria & Thomas Sterner & Alexandre Antonelli, 2022. "Improving biodiversity protection through artificial intelligence," Nature Sustainability, Nature, vol. 5(5), pages 415-424, May.
  • Handle: RePEc:nat:natsus:v:5:y:2022:i:5:d:10.1038_s41893-022-00851-6
    DOI: 10.1038/s41893-022-00851-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-022-00851-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-022-00851-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerrie A. Wilson & Marissa F. McBride & Michael Bode & Hugh P. Possingham, 2006. "Prioritizing global conservation efforts," Nature, Nature, vol. 440(7082), pages 337-340, March.
    2. Thomas Sterner & Edward B. Barbier & Ian Bateman & Inge Bijgaart & Anne-Sophie Crépin & Ottmar Edenhofer & Carolyn Fischer & Wolfgang Habla & John Hassler & Olof Johansson-Stenman & Andreas Lange & St, 2019. "Policy design for the Anthropocene," Nature Sustainability, Nature, vol. 2(1), pages 14-21, January.
    3. C. R. Margules & R. L. Pressey, 2000. "Systematic conservation planning," Nature, Nature, vol. 405(6783), pages 243-253, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kadukothanahally Nagaraju Shivaprakash & Niraj Swami & Sagar Mysorekar & Roshni Arora & Aditya Gangadharan & Karishma Vohra & Madegowda Jadeyegowda & Joseph M. Kiesecker, 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    2. Meftah Salem M. Alfatni & Siti Khairunniza-Bejo & Mohammad Hamiruce B. Marhaban & Osama M. Ben Saaed & Aouache Mustapha & Abdul Rashid Mohamed Shariff, 2022. "Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis," Agriculture, MDPI, vol. 12(9), pages 1-28, September.
    3. Yaliu Yang & Yuan Wang & Yingyan Zhang & Conghu Liu, 2022. "Data-Driven Coupling Coordination Development of Regional Innovation EROB Composite System: An Integrated Model Perspective," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    4. Arjun Srivathsa & Divya Vasudev & Tanaya Nair & Stotra Chakrabarti & Pranav Chanchani & Ruth DeFries & Arpit Deomurari & Sutirtha Dutta & Dipankar Ghose & Varun R. Goswami & Rajat Nayak & Amrita Neela, 2023. "Prioritizing India’s landscapes for biodiversity, ecosystem services and human well-being," Nature Sustainability, Nature, vol. 6(5), pages 568-577, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    2. Kangas, Johanna & Ollikainen, Markku, 2022. "A PES scheme promoting forest biodiversity and carbon sequestration," Forest Policy and Economics, Elsevier, vol. 136(C).
    3. Guillermo J. Martínez Pastur & Dante Loto & Julián Rodríguez-Souilla & Eduarda M. O. Silveira & Juan M. Cellini & Pablo L. Peri, 2024. "Different Approaches of Forest Type Classifications for Argentina Based on Functional Forests and Canopy Cover Composition by Tree Species," Resources, MDPI, vol. 13(5), pages 1-20, April.
    4. Tamara S. Wilson & Benjamin M. Sleeter & Rachel R. Sleeter & Christopher E. Soulard, 2014. "Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach," Land, MDPI, vol. 3(2), pages 1-28, April.
    5. Auriel M. V. Fournier & R. Randy Wilson & Jeffrey S. Gleason & Evan M. Adams & Janell M. Brush & Robert J. Cooper & Stephen J. DeMaso & Melanie J. L. Driscoll & Peter C. Frederick & Patrick G. R. Jodi, 2023. "Structured Decision Making to Prioritize Regional Bird Monitoring Needs," Interfaces, INFORMS, vol. 53(3), pages 207-217, May.
    6. Wang, Haoluan, 2017. "Land Conservation for Open Space: The Impact of Neighbors and the Natural Environment," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258125, Agricultural and Applied Economics Association.
    7. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    8. Shirley Saenz & Tomas Walschburger & Juan Carlos González & Jorge León & Bruce McKenney & Joseph Kiesecker, 2013. "A Framework for Implementing and Valuing Biodiversity Offsets in Colombia: A Landscape Scale Perspective," Sustainability, MDPI, vol. 5(12), pages 1-27, November.
    9. Iritie, Jean-Jacques, 2015. "Economic Growth, Biodiversity and Conservation Policies in Africa: an Overview," MPRA Paper 62005, University Library of Munich, Germany.
    10. Zhouqiao Ren & Wanxin Zhan & Qiaobing Yue & Jianhua He, 2020. "Prioritizing Agricultural Patches for Reforestation to Improve Connectivity of Habitat Conservation Areas: A Guide to Grain-to-Green Project," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    11. Lennox, Gareth D. & Armsworth, Paul R., 2011. "Suitability of short or long conservation contracts under ecological and socio-economic uncertainty," Ecological Modelling, Elsevier, vol. 222(15), pages 2856-2866.
    12. Sari, Dwi Amalia & Margules, Chris & Lim, Han She & Widyatmaka, Febrio & Sayer, Jeffrey & Dale, Allan & Macgregor, Colin, 2021. "Evaluating policy coherence: A case study of peatland forests on the Kampar Peninsula landscape, Indonesia," Land Use Policy, Elsevier, vol. 105(C).
    13. Michael A. Wulder & Jeffrey A. Cardille & Joanne C. White & Bronwyn Rayfield, 2018. "Context and Opportunities for Expanding Protected Areas in Canada," Land, MDPI, vol. 7(4), pages 1-21, November.
    14. Robert F. Baldwin & Nakisha T. Fouch, 2018. "Understanding the Biodiversity Contributions of Small Protected Areas Presents Many Challenges," Land, MDPI, vol. 7(4), pages 1-12, October.
    15. John A. Gallo & Amanda T. Lombard & Richard M. Cowling, 2022. "Conservation Planning for Action: End-User Engagement in the Development and Dual-Centric Weighting of a Spatial Decision Support System," Land, MDPI, vol. 12(1), pages 1-14, December.
    16. H. K. Millington & J. E. Lovell & C. A. K. Lovell, 2013. "Using Fieldwork, GIS and DEA to Guide Management of Urban Stream Health," CEPA Working Papers Series WP072013, School of Economics, University of Queensland, Australia.
    17. Cho, Seong-Hoon & Kim, Seung Gyu & Roberts, Roland K. & Jung, Suhyun, 2009. "Amenity values of spatial configurations of forest landscapes over space and time in the Southern Appalachian Highlands," Ecological Economics, Elsevier, vol. 68(10), pages 2646-2657, August.
    18. Li, Shicheng & Zhang, Heng & Zhou, Xuewu & Yu, Haibin & Li, Wangjun, 2020. "Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau," Ecosystem Services, Elsevier, vol. 43(C).
    19. Patricio Sarmiento-Mateos & Cecilia Arnaiz-Schmitz & Cristina Herrero-Jáuregui & Francisco D. Pineda & María F. Schmitz, 2019. "Designing Protected Areas for Social–Ecological Sustainability: Effectiveness of Management Guidelines for Preserving Cultural Landscapes," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    20. Cho, Seong-Hoon & Kim, Taeyoung & Larson, Eric R. & Armsworth, Paul R., 2017. "Economies of scale in forestland acquisition costs for nature conservation," Forest Policy and Economics, Elsevier, vol. 75(C), pages 73-82.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:5:y:2022:i:5:d:10.1038_s41893-022-00851-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.