IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v4y2020i8d10.1038_s41562-020-0881-2.html
   My bibliography  Save this article

Social goods dilemmas in heterogeneous societies

Author

Listed:
  • Alex McAvoy

    (Harvard University)

  • Benjamin Allen

    (Emmanuel College)

  • Martin A. Nowak

    (Harvard University
    Harvard University)

Abstract

Prosocial behaviours are encountered in the donation game, the prisoner’s dilemma, relaxed social dilemmas and public goods games. Many studies assume that the population structure is homogeneous, meaning that all individuals have the same number of interaction partners or that the social good is of one particular type. Here, we explore general evolutionary dynamics for arbitrary spatial structures and social goods. We find that heterogeneous networks, in which some individuals have many more interaction partners than others, can enhance the evolution of prosocial behaviours. However, they often accumulate most of the benefits in the hands of a few highly connected individuals, while many others receive low or negative payoff. Surprisingly, selection can favour producers of social goods even if the total costs exceed the total benefits. In summary, heterogeneous structures have the ability to strongly promote the emergence of prosocial behaviours, but they also create the possibility of generating large inequality.

Suggested Citation

  • Alex McAvoy & Benjamin Allen & Martin A. Nowak, 2020. "Social goods dilemmas in heterogeneous societies," Nature Human Behaviour, Nature, vol. 4(8), pages 819-831, August.
  • Handle: RePEc:nat:nathum:v:4:y:2020:i:8:d:10.1038_s41562-020-0881-2
    DOI: 10.1038/s41562-020-0881-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-020-0881-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-020-0881-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allen, Benjamin & McAvoy, Alex, 2024. "The coalescent in finite populations with arbitrary, fixed structure," Theoretical Population Biology, Elsevier, vol. 158(C), pages 150-169.
    2. Xu Chen & Xuan Di & Zechu Li, 2023. "Social Learning for Sequential Driving Dilemmas," Games, MDPI, vol. 14(3), pages 1-12, May.
    3. Wang, Chaoqian & Szolnoki, Attila, 2022. "Involution game with spatio-temporal heterogeneity of social resources," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    4. Xu, Yan & Zhao, Dawei & Chen, Jiaxing & Liu, Tao & Xia, Chengyi, 2024. "The nested structures of higher-order interactions promote the cooperation in complex social networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    5. Chaoqian Wang & Matjaž Perc & Attila Szolnoki, 2024. "Evolutionary dynamics of any multiplayer game on regular graphs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Wang, Jianwei & Xu, Wenshu & Yu, Fengyuan & He, Jialu & Chen, Wei & Dai, Wenhui, 2024. "Evolution of cooperation under corrupt institutions," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    7. Kurokawa, Shun, 2024. "Persistence in repeated games encourages the evolution of spite," Theoretical Population Biology, Elsevier, vol. 158(C), pages 109-120.
    8. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    9. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Li, Wen-Jing & Chen, Zhi & Wang, Jun & Jiang, Luo-Luo & Perc, Matjaž, 2023. "Social mobility and network reciprocity shape cooperation in collaborative networks," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Kamran Kaveh & Alex McAvoy & Krishnendu Chatterjee & Martin A Nowak, 2020. "The Moran process on 2-chromatic graphs," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-18, November.
    12. Alex McAvoy & Andrew Rao & Christoph Hauert, 2021. "Intriguing effects of selection intensity on the evolution of prosocial behaviors," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-21, November.
    13. Jayles, Bertrand & Cheong, Siew Ann & Herrmann, Hans J., 2022. "Interactions between communities improve the resilience of multicultural societies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    14. Pan, Na & Zeng, Ziyan & Zhang, Yuji & Feng, Minyu, 2024. "Defined benefit pension plan inhibit the emergence of cooperation in the public goods games," Applied Mathematics and Computation, Elsevier, vol. 477(C).
    15. Wang, Chaoqian, 2024. "Evolution of trust in structured populations," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    16. Zhang, Wei, 2024. "Network reciprocity and inequality: The role of additional mixing links among social groups," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Xiaochen Wang & Lei Zhou & Alex McAvoy & Aming Li, 2023. "Imitation dynamics on networks with incomplete information," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:4:y:2020:i:8:d:10.1038_s41562-020-0881-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.