IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49505-5.html
   My bibliography  Save this article

Evolutionary dynamics of any multiplayer game on regular graphs

Author

Listed:
  • Chaoqian Wang

    (George Mason University)

  • Matjaž Perc

    (University of Maribor
    Community Healthcare Center Dr. Adolf Drolc Maribor
    Complexity Science Hub Vienna
    Kyung Hee University)

  • Attila Szolnoki

    (Centre for Energy Research)

Abstract

Multiplayer games on graphs are at the heart of theoretical descriptions of key evolutionary processes that govern vital social and natural systems. However, a comprehensive theoretical framework for solving multiplayer games with an arbitrary number of strategies on graphs is still missing. Here, we solve this by drawing an analogy with the Balls-and-Boxes problem, based on which we show that the local configuration of multiplayer games on graphs is equivalent to distributing k identical co-players among n distinct strategies. We use this to derive the replicator equation for any n-strategy multiplayer game under weak selection, which can be solved in polynomial time. As an example, we revisit the second-order free-riding problem, where costly punishment cannot truly resolve social dilemmas in a well-mixed population. Yet, in structured populations, we derive an accurate threshold for the punishment strength, beyond which punishment can either lead to the extinction of defection or transform the system into a rock-paper-scissors-like cycle. The analytical solution also qualitatively agrees with the phase diagrams that were previously obtained for non-marginal selection strengths. Our framework thus allows an exploration of any multi-strategy multiplayer game on regular graphs.

Suggested Citation

  • Chaoqian Wang & Matjaž Perc & Attila Szolnoki, 2024. "Evolutionary dynamics of any multiplayer game on regular graphs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49505-5
    DOI: 10.1038/s41467-024-49505-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49505-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49505-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Szolnoki, Attila & Chen, Xiaojie, 2022. "Tactical cooperation of defectors in a multi-stage public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    3. Zhang, Wei & Brandes, Ulrik, 2023. "Is cooperation sustained under increased mixing in evolutionary public goods games on networks?," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. F. Débarre & C. Hauert & M. Doebeli, 2014. "Social evolution in structured populations," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    5. Dirk Helbing & Attila Szolnoki & Matjaž Perc & György Szabó, 2010. "Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-9, April.
    6. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    7. Ernst Fehr & Simon Gächter, 2002. "Altruistic punishment in humans," Nature, Nature, vol. 415(6868), pages 137-140, January.
    8. Dirk Semmann & Hans-Jürgen Krambeck & Manfred Milinski, 2003. "Volunteering leads to rock–paper–scissors dynamics in a public goods game," Nature, Nature, vol. 425(6956), pages 390-393, September.
    9. Alex McAvoy & Benjamin Allen & Martin A. Nowak, 2020. "Social goods dilemmas in heterogeneous societies," Nature Human Behaviour, Nature, vol. 4(8), pages 819-831, August.
    10. Wang, Shengxian & Chen, Xiaojie & Xiao, Zhilong & Szolnoki, Attila, 2022. "Decentralized incentives for general well-being in networked public goods game," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    11. Qi Su & Alex McAvoy & Yoichiro Mori & Joshua B. Plotkin, 2022. "Evolution of prosocial behaviours in multilayer populations," Nature Human Behaviour, Nature, vol. 6(3), pages 338-348, March.
    12. Benjamin Kerr & Margaret A. Riley & Marcus W. Feldman & Brendan J. M. Bohannan, 2002. "Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors," Nature, Nature, vol. 418(6894), pages 171-174, July.
    13. Karl Sigmund & Hannelore De Silva & Arne Traulsen & Christoph Hauert, 2010. "Social learning promotes institutions for governing the commons," Nature, Nature, vol. 466(7308), pages 861-863, August.
    14. Manh Hong Duong & The Anh Han, 2016. "On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game," Dynamic Games and Applications, Springer, vol. 6(3), pages 324-346, September.
    15. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    16. Wang, Chaoqian & Szolnoki, Attila, 2023. "Inertia in spatial public goods games under weak selection," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei, 2024. "Network reciprocity and inequality: The role of additional mixing links among social groups," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Wang, Chaoqian, 2024. "Evolution of trust in structured populations," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    3. Ding, Rui & Wang, Xianjia & Zhao, Jinhua & Gu, Cuiling & Wang, Tao, 2023. "The evolution of cooperation in spatial public goods games under a risk-transfer mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Deng, Kuiying & Li, Zhuozheng & Kurokawa, Shun & Chu, Tianguang, 2012. "Rare but severe concerted punishment that favors cooperation," Theoretical Population Biology, Elsevier, vol. 81(4), pages 284-291.
    5. Wang, Xianjia & Ding, Rui & Zhao, Jinhua & Chen, Wenman & Gu, Cuiling, 2022. "Competition of punishment and reward among inequity-averse individuals in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Xiaochen Wang & Lei Zhou & Alex McAvoy & Aming Li, 2023. "Imitation dynamics on networks with incomplete information," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    8. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Alexander Isakov & David Rand, 2012. "The Evolution of Coercive Institutional Punishment," Dynamic Games and Applications, Springer, vol. 2(1), pages 97-109, March.
    10. Luo-Luo Jiang & Matjaž Perc & Attila Szolnoki, 2013. "If Cooperation Is Likely Punish Mildly: Insights from Economic Experiments Based on the Snowdrift Game," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
    11. Lv, Shaojie & Song, Feifei, 2022. "Particle swarm intelligence and the evolution of cooperation in the spatial public goods game with punishment," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    12. Ohdaira, Tetsushi, 2017. "Characteristics of the evolution of cooperation by the probabilistic peer-punishment based on the difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 77-83.
    13. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    14. Feng, Sinan & Liu, Xuesong & Dong, Yida, 2022. "Limited punishment pool may promote cooperation in the public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    15. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    16. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    17. Wang, Xianjia & Ding, Rui & Zhao, Jinhua & Gu, Cuiling, 2022. "The rise and fall of cooperation in populations with multiple groups," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    18. Wang, Chaoqian & Sun, Chengbin, 2023. "Public goods game across multilayer populations with different densities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Zhu, Wenqiang & Pan, Qiuhui & Song, Sha & He, Mingfeng, 2023. "Effects of exposure-based reward and punishment on the evolution of cooperation in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Ding, Rui & Wang, Xianjia & Liu, Yang & Zhao, Jinhua & Gu, Cuiling, 2023. "Evolutionary games with environmental feedbacks under an external incentive mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49505-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.