IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v7y2022i7d10.1038_s41560-022-01056-z.html
   My bibliography  Save this article

Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor

Author

Listed:
  • Christopher Jung

    (Albert-Ludwigs-University of Freiburg)

  • Dirk Schindler

    (Albert-Ludwigs-University of Freiburg)

Abstract

The capacity factor (cf) is a critical variable for quantifying wind turbine efficiency. Climate change-induced wind resource variations and technical wind turbine fleet development will alter future cfs. Here we define 12 techno-climatic change scenarios to assess regional and global onshore cfs in 2021–2060. Despite a decreasing global wind resource, we find an increase in future global cf caused by fleet development. The increase is significant under all evaluated techno-climatic scenarios. Under the likely emissions scenario Shared Socioeconomic Pathway 2–4.5, global cf increases from 0.251 in 2021 up to 0.310 in 2035 under ambitious fleet development. This cf enhancement is equivalent to a 361 TWh yield improvement under the globally installed capacity of 2020 (698 GW). To increase the contribution of the future wind turbine fleet to the Intergovernmental Panel on Climate Change climate protection goals, we recommend a rapid wind turbine fleet conversion.

Suggested Citation

  • Christopher Jung & Dirk Schindler, 2022. "Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor," Nature Energy, Nature, vol. 7(7), pages 608-619, July.
  • Handle: RePEc:nat:natene:v:7:y:2022:i:7:d:10.1038_s41560-022-01056-z
    DOI: 10.1038/s41560-022-01056-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-022-01056-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-022-01056-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Jung & Dirk Schindler, 2023. "Reasons for the Recent Onshore Wind Capacity Factor Increase," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Esnaola, Ganix & Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel, 2024. "Future changes of global Annual and Seasonal Wind-Energy Production in CMIP6 projections considering air density variation," Energy, Elsevier, vol. 307(C).
    3. Yang, Zihao & Dong, Sheng, 2024. "A novel framework for wind energy assessment at multi-time scale based on non-stationary wind speed models: A case study in China," Renewable Energy, Elsevier, vol. 226(C).
    4. Jung, Christopher & Schindler, Dirk, 2024. "Global trends of wind direction-dependent wind resource," Energy, Elsevier, vol. 304(C).
    5. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    6. Zhang, Juntao & Cheng, Chuntian & Yu, Shen, 2024. "Recognizing the mapping relationship between wind power output and meteorological information at a province level by coupling GIS and CNN technologies," Applied Energy, Elsevier, vol. 360(C).
    7. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Martinez, A. & Iglesias, G., 2024. "Global wind energy resources decline under climate change," Energy, Elsevier, vol. 288(C).
    9. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    10. He, J.Y. & Chan, P.W. & Li, Q.S. & Tong, H.W., 2023. "Mapping future offshore wind resources in the South China Sea under climate change by regional climate modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Liu, Fa & Sun, Fubao & Wang, Xunming, 2023. "Impact of turbine technology on wind energy potential and CO2 emission reduction under different wind resource conditions in China," Applied Energy, Elsevier, vol. 348(C).
    12. Abdulkarim Athwer & Ahmed Darwish, 2023. "A Review on Modular Converter Topologies Based on WBG Semiconductor Devices in Wind Energy Conversion Systems," Energies, MDPI, vol. 16(14), pages 1-44, July.
    13. Tsani, Tsamara & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Quantifying social factors for onshore wind planning – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:7:y:2022:i:7:d:10.1038_s41560-022-01056-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.