IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v7y2022i1d10.1038_s41560-021-00949-9.html
   My bibliography  Save this article

Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination

Author

Listed:
  • Zhenyi Ni

    (University of North Carolina)

  • Haoyang Jiao

    (University of North Carolina)

  • Chengbin Fei

    (University of North Carolina)

  • Hangyu Gu

    (University of North Carolina)

  • Shuang Xu

    (University of North Carolina)

  • Zhenhua Yu

    (University of North Carolina)

  • Guang Yang

    (University of North Carolina)

  • Yehao Deng

    (University of North Carolina)

  • Qi Jiang

    (University of North Carolina)

  • Ye Liu

    (University of North Carolina)

  • Yanfa Yan

    (University of Toledo)

  • Jinsong Huang

    (University of North Carolina)

Abstract

The efficiency and stability of perovskite solar cells are essentially determined by defects in the perovskite layer, yet their chemical nature and linking with the degradation mechanism of devices remain unclear. Here we uncover where degradation occurs and the underlying mechanisms and defects involved in the performance degradation of p–i–n perovskite solar cells under illumination or reverse bias. Light-induced degradation starts with the generation of iodide interstitials at the interfacial region between the perovskite and both charge transport layers. While we observe trap annihilation of two types of iodide defect at the anode side, we find negatively charged iodide interstitials near the cathode side, which we show to be more detrimental to the solar cell efficiency. The reverse-bias degradation is initialized by the interaction between iodide interstitials and injected holes at the interface between the electron transport layer and the perovskite. Introducing a hole-blocking layer between the layers suppresses this interaction, improving the reverse-bias stability.

Suggested Citation

  • Zhenyi Ni & Haoyang Jiao & Chengbin Fei & Hangyu Gu & Shuang Xu & Zhenhua Yu & Guang Yang & Yehao Deng & Qi Jiang & Ye Liu & Yanfa Yan & Jinsong Huang, 2022. "Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination," Nature Energy, Nature, vol. 7(1), pages 65-73, January.
  • Handle: RePEc:nat:natene:v:7:y:2022:i:1:d:10.1038_s41560-021-00949-9
    DOI: 10.1038/s41560-021-00949-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00949-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00949-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Mariani & Miguel Ángel Molina-García & Jessica Barichello & Marilena Isabella Zappia & Erica Magliano & Luigi Angelo Castriotta & Luca Gabatel & Sanjay Balkrishna Thorat & Antonio Esaú Rio Casti, 2024. "Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    4. Fengtao Pei & Yihua Chen & Qianqian Wang & Liang Li & Yue Ma & Huifen Liu & Ye Duan & Tinglu Song & Haipeng Xie & Guilin Liu & Ning Yang & Ying Zhang & Wentao Zhou & Jiaqian Kang & Xiuxiu Niu & Kailin, 2024. "A binary 2D perovskite passivation for efficient and stable perovskite/silicon tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Md Aslam Uddin & Prem Jyoti Singh Rana & Zhenyi Ni & Guang Yang & Mingze Li & Mengru Wang & Hangyu Gu & Hengkai Zhang & Benjia Dak Dou & Jinsong Huang, 2024. "Iodide manipulation using zinc additives for efficient perovskite solar minimodules," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Tong Wang & Jiabao Yang & Qi Cao & Xingyu Pu & Yuke Li & Hui Chen & Junsong Zhao & Yixin Zhang & Xingyuan Chen & Xuanhua Li, 2023. "Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Cheng Gong & Haiyun Li & Huaxin Wang & Cong Zhang & Qixin Zhuang & Awen Wang & Zhiyuan Xu & Wensi Cai & Ru Li & Xiong Li & Zhigang Zang, 2024. "Silver coordination-induced n-doping of PCBM for stable and efficient inverted perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Ahmad R. Kirmani & Todd A. Byers & Zhenyi Ni & Kaitlyn VanSant & Darshpreet K. Saini & Rebecca Scheidt & Xiaopeng Zheng & Tatchen Buh Kum & Ian R. Sellers & Lyndsey McMillon-Brown & Jinsong Huang & Bi, 2024. "Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:7:y:2022:i:1:d:10.1038_s41560-021-00949-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.