IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07558-3.html
   My bibliography  Save this article

Cleaning interfaces in layered materials heterostructures

Author

Listed:
  • D. G. Purdie

    (University of Cambridge)

  • N. M. Pugno

    (University of Trento
    Queen Mary University of London
    Ket-lab, E. Amaldi Foundation)

  • T. Taniguchi

    (National Institute for Materials Science)

  • K. Watanabe

    (National Institute for Materials Science)

  • A. C. Ferrari

    (University of Cambridge)

  • A. Lombardo

    (University of Cambridge)

Abstract

Heterostructures formed by stacking layered materials require atomically clean interfaces. However, contaminants are usually trapped between the layers, aggregating into randomly located blisters, incompatible with scalable fabrication processes. Here we report a process to remove blisters from fully formed heterostructures. Our method is over an order of magnitude faster than those previously reported and allows multiple interfaces to be cleaned simultaneously. We fabricate blister-free regions of graphene encapsulated in hexagonal boron nitride with an area ~ 5000 μm2, achieving mobilities up to 180,000 cm2 V−1 s−1 at room temperature, and 1.8 × 106 cm2 V−1 s−1 at 9 K. We also assemble heterostructures using graphene intentionally exposed to polymers and solvents. After cleaning, these samples reach similar mobilities. This demonstrates that exposure of graphene to process-related contaminants is compatible with the realization of high mobility samples, paving the way to the development of wafer-scale processes for the integration of layered materials in (opto)electronic devices.

Suggested Citation

  • D. G. Purdie & N. M. Pugno & T. Taniguchi & K. Watanabe & A. C. Ferrari & A. Lombardo, 2018. "Cleaning interfaces in layered materials heterostructures," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07558-3
    DOI: 10.1038/s41467-018-07558-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07558-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07558-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron H. Barajas-Aguilar & Jasen Zion & Ian Sequeira & Andrew Z. Barabas & Takashi Taniguchi & Kenji Watanabe & Eric B. Barrett & Thomas Scaffidi & Javier D. Sanchez-Yamagishi, 2024. "Electrically driven amplification of terahertz acoustic waves in graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Alberto Montanaro & Giulia Piccinini & Vaidotas Mišeikis & Vito Sorianello & Marco A. Giambra & Stefano Soresi & Luca Giorgi & Antonio D’Errico & K. Watanabe & T. Taniguchi & Sergio Pezzini & Camilla , 2023. "Sub-THz wireless transmission based on graphene-integrated optoelectronic mixer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Anna M. Seiler & Nils Jacobsen & Martin Statz & Noelia Fernandez & Francesca Falorsi & Kenji Watanabe & Takashi Taniguchi & Zhiyu Dong & Leonid S. Levitov & R. Thomas Weitz, 2024. "Probing the tunable multi-cone band structure in Bernal bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Erfu Liu & Jeremiah Baren & Zhengguang Lu & Takashi Taniguchi & Kenji Watanabe & Dmitry Smirnov & Yia-Chung Chang & Chun Hung Lui, 2021. "Exciton-polaron Rydberg states in monolayer MoSe2 and WSe2," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. David Barcons Ruiz & Hanan Herzig Sheinfux & Rebecca Hoffmann & Iacopo Torre & Hitesh Agarwal & Roshan Krishna Kumar & Lorenzo Vistoli & Takashi Taniguchi & Kenji Watanabe & Adrian Bachtold & Frank H., 2022. "Engineering high quality graphene superlattices via ion milled ultra-thin etching masks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Eva A. A. Pogna & Valentino Pistore & Leonardo Viti & Lianhe Li & A. Giles Davies & Edmund H. Linfield & Miriam S. Vitiello, 2024. "Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07558-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.