IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03436-0.html
   My bibliography  Save this article

Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide

Author

Listed:
  • Alberto Ciarrocchi

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Ahmet Avsar

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Dmitry Ovchinnikov

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Andras Kis

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

Abstract

The possibility of tailoring physical properties by changing the number of layers in van der Waals crystals is one of the driving forces behind the emergence of two-dimensional materials. One example is bulk MoS2, which changes from an indirect gap semiconductor to a direct bandgap semiconductor in the monolayer form. Here, we show a much bigger tuning range with a complete switching from a metal to a semiconductor in atomically thin PtSe2 as its thickness is reduced. Crystals with a thickness of ~13 nm show metallic behavior with a contact resistance as low as 70 Ω·µm. As they are thinned down to 2.5 nm and below, we observe semiconducting behavior. In such thin crystals, we demonstrate ambipolar transport with a bandgap smaller than 2.2 eV and an on/off ratio of ~105. Our results demonstrate that PtSe2 possesses an unusual behavior among 2D materials, enabling novel applications in nano and optoelectronics.

Suggested Citation

  • Alberto Ciarrocchi & Ahmet Avsar & Dmitry Ovchinnikov & Andras Kis, 2018. "Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03436-0
    DOI: 10.1038/s41467-018-03436-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03436-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03436-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Shujuan Xu & Huizhen Zheng & Ronglin Ma & Di Wu & Yanxia Pan & Chunyang Yin & Meng Gao & Weili Wang & Wei Li & Sijin Liu & Zhifang Chai & Ruibin Li, 2020. "Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Lijie Chen & Weitao Zhang & Hanlin Zhang & Jiawang Chen & Chaoyang Tan & Shiqi Yin & Gang Li & Yu Zhang & Penglai Gong & Liang Li, 2021. "In-Plane Anisotropic Thermal Conductivity of Low-Symmetry PdSe 2," Sustainability, MDPI, vol. 13(8), pages 1-10, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03436-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.