IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03212-0.html
   My bibliography  Save this article

Nanowire arrays restore vision in blind mice

Author

Listed:
  • Jing Tang

    (Fudan University)

  • Nan Qin

    (Fudan University)

  • Yan Chong

    (Fudan University)

  • Yupu Diao

    (Fudan University)

  • Yiliguma

    (Fudan University)

  • Zhexuan Wang

    (Fudan University)

  • Tian Xue

    (University of Science and Technology of China)

  • Min Jiang

    (Fudan University)

  • Jiayi Zhang

    (Fudan University)

  • Gengfeng Zheng

    (Fudan University)

Abstract

The restoration of light response with complex spatiotemporal features in retinal degenerative diseases towards retinal prosthesis has proven to be a considerable challenge over the past decades. Herein, inspired by the structure and function of photoreceptors in retinas, we develop artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays, for restoration of visual responses in the blind mice with degenerated photoreceptors. Green, blue and near UV light responses in the retinal ganglion cells (RGCs) are restored with a spatial resolution better than 100 µm. ON responses in RGCs are blocked by glutamatergic antagonists, suggesting functional preservation of the remaining retinal circuits. Moreover, neurons in the primary visual cortex respond to light after subretinal implant of nanowire arrays. Improvement in pupillary light reflex suggests the behavioral recovery of light sensitivity. Our study will shed light on the development of a new generation of optoelectronic toolkits for subretinal prosthetic devices.

Suggested Citation

  • Jing Tang & Nan Qin & Yan Chong & Yupu Diao & Yiliguma & Zhexuan Wang & Tian Xue & Min Jiang & Jiayi Zhang & Gengfeng Zheng, 2018. "Nanowire arrays restore vision in blind mice," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03212-0
    DOI: 10.1038/s41467-018-03212-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03212-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03212-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Vagni & Marta Jole Ildelfonsa Airaghi Leccardi & Charles-Henri Vila & Elodie Geneviève Zollinger & Golnaz Sherafatipour & Thomas J. Wolfensberger & Diego Ghezzi, 2022. "POLYRETINA restores light responses in vivo in blind Göttingen minipigs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Ting Jiang & Yiru Wang & Yingshuang Zheng & Le Wang & Xiang He & Liqiang Li & Yunfeng Deng & Huanli Dong & Hongkun Tian & Yanhou Geng & Linghai Xie & Yong Lei & Haifeng Ling & Deyang Ji & Wenping Hu, 2023. "Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Pengcheng Sun & Chaochao Li & Can Yang & Mengchun Sun & Hanqing Hou & Yanjun Guan & Jinger Chen & Shangbin Liu & Kuntao Chen & Yuan Ma & Yunxiang Huang & Xiangling Li & Huachun Wang & Liu Wang & Sheng, 2024. "A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03212-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.