IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01237-5.html
   My bibliography  Save this article

Blue light and CO2 signals converge to regulate light-induced stomatal opening

Author

Listed:
  • Asami Hiyama

    (Kyushu University)

  • Atsushi Takemiya

    (Kyushu University
    Graduate School of Sciences and Technology for Innovation)

  • Shintaro Munemasa

    (Okayama University)

  • Eiji Okuma

    (Okayama University)

  • Naoyuki Sugiyama

    (Kyoto University)

  • Yasuomi Tada

    (Nagoya University)

  • Yoshiyuki Murata

    (Okayama University)

  • Ken-ichiro Shimazaki

    (Kyushu University)

Abstract

Stomata regulate gas exchange between plants and atmosphere by integrating opening and closing signals. Stomata open in response to low CO2 concentrations to maximize photosynthesis in the light; however, the mechanisms that coordinate photosynthesis and stomatal conductance have yet to be identified. Here we identify and characterize CBC1/2 (CONVERGENCE OF BLUE LIGHT (BL) AND CO2 1/2), two kinases that link BL, a major component of photosynthetically active radiation (PAR), and the signals from low concentrations of CO2 in guard cells. CBC1/CBC2 redundantly stimulate stomatal opening by inhibition of S-type anion channels in response to both BL and low concentrations of CO2. CBC1/CBC2 function in the signaling pathways of phototropins and HT1 (HIGH LEAF TEMPERATURE 1). CBC1/CBC2 interact with and are phosphorylated by HT1. We propose that CBCs regulate stomatal aperture by integrating signals from BL and CO2 and act as the convergence site for signals from BL and low CO2.

Suggested Citation

  • Asami Hiyama & Atsushi Takemiya & Shintaro Munemasa & Eiji Okuma & Naoyuki Sugiyama & Yasuomi Tada & Yoshiyuki Murata & Ken-ichiro Shimazaki, 2017. "Blue light and CO2 signals converge to regulate light-induced stomatal opening," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01237-5
    DOI: 10.1038/s41467-017-01237-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01237-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01237-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marius Arend & Yizhong Yuan & M. Águila Ruiz-Sola & Nooshin Omranian & Zoran Nikoloski & Dimitris Petroutsos, 2023. "Widening the landscape of transcriptional regulation of green algal photoprotection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Saashia Fuji & Shota Yamauchi & Naoyuki Sugiyama & Takayuki Kohchi & Ryuichi Nishihama & Ken-ichiro Shimazaki & Atsushi Takemiya, 2024. "Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H+-ATPase," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Lea Reuter & Tanja Schmidt & Prabha Manishankar & Christian Throm & Jutta Keicher & Andrea Bock & Irina Droste-Borel & Claudia Oecking, 2021. "Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. repec:caa:jnlpse:v:preprint:id:480-2023-pse is not listed on IDEAS
    5. Stuart Sullivan & Thomas Waksman & Dimitra Paliogianni & Louise Henderson & Melanie Lütkemeyer & Noriyuki Suetsugu & John M. Christie, 2021. "Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Wen Shi & Yue Liu & Na Zhao & Lianmei Yao & Jinge Li & Min Fan & Bojian Zhong & Ming-Yi Bai & Chao Han, 2024. "Hydrogen peroxide is required for light-induced stomatal opening across different plant species," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Shipeng Luo & Jun Zou & Mingming Shi & Senmao Lin & Dawei Wang & Wenbin Liu & Yan Shen & Xiaotao Ding & Yuping Jiang, 2024. "Effects of red-blue light spectrum on growth, yield, and photo-synthetic efficiency of lettuce in a uniformly illumination environment," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(5), pages 305-316.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01237-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.