IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26333-5.html
   My bibliography  Save this article

Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding

Author

Listed:
  • Stuart Sullivan

    (University of Glasgow)

  • Thomas Waksman

    (University of Glasgow)

  • Dimitra Paliogianni

    (University of Glasgow)

  • Louise Henderson

    (University of Glasgow)

  • Melanie Lütkemeyer

    (University of Glasgow
    Bielefeld University)

  • Noriyuki Suetsugu

    (University of Glasgow
    The University of Tokyo)

  • John M. Christie

    (University of Glasgow)

Abstract

Polarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.

Suggested Citation

  • Stuart Sullivan & Thomas Waksman & Dimitra Paliogianni & Louise Henderson & Melanie Lütkemeyer & Noriyuki Suetsugu & John M. Christie, 2021. "Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26333-5
    DOI: 10.1038/s41467-021-26333-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26333-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26333-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Asami Hiyama & Atsushi Takemiya & Shintaro Munemasa & Eiji Okuma & Naoyuki Sugiyama & Yasuomi Tada & Yoshiyuki Murata & Ken-ichiro Shimazaki, 2017. "Blue light and CO2 signals converge to regulate light-induced stomatal opening," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    2. Paolo Schumacher & Emilie Demarsy & Patrice Waridel & Laure Allenbach Petrolati & Martine Trevisan & Christian Fankhauser, 2018. "A phosphorylation switch turns a positive regulator of phototropism into an inhibitor of the process," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lea Reuter & Tanja Schmidt & Prabha Manishankar & Christian Throm & Jutta Keicher & Andrea Bock & Irina Droste-Borel & Claudia Oecking, 2021. "Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. repec:caa:jnlpse:v:preprint:id:480-2023-pse is not listed on IDEAS
    3. Marius Arend & Yizhong Yuan & M. Águila Ruiz-Sola & Nooshin Omranian & Zoran Nikoloski & Dimitris Petroutsos, 2023. "Widening the landscape of transcriptional regulation of green algal photoprotection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Wen Shi & Yue Liu & Na Zhao & Lianmei Yao & Jinge Li & Min Fan & Bojian Zhong & Ming-Yi Bai & Chao Han, 2024. "Hydrogen peroxide is required for light-induced stomatal opening across different plant species," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Shipeng Luo & Jun Zou & Mingming Shi & Senmao Lin & Dawei Wang & Wenbin Liu & Yan Shen & Xiaotao Ding & Yuping Jiang, 2024. "Effects of red-blue light spectrum on growth, yield, and photo-synthetic efficiency of lettuce in a uniformly illumination environment," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(5), pages 305-316.
    6. Saashia Fuji & Shota Yamauchi & Naoyuki Sugiyama & Takayuki Kohchi & Ryuichi Nishihama & Ken-ichiro Shimazaki & Atsushi Takemiya, 2024. "Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H+-ATPase," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26333-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.