IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13210.html
   My bibliography  Save this article

Mixed functional microarchitectures for orientation selectivity in the mouse primary visual cortex

Author

Listed:
  • Satoru Kondo

    (Graduate School of Medical Sciences, Kyushu University
    CREST, Japan Science and Technology Agency
    The University of Tokyo School of Medicine)

  • Takashi Yoshida

    (Graduate School of Medical Sciences, Kyushu University
    CREST, Japan Science and Technology Agency
    The University of Tokyo School of Medicine)

  • Kenichi Ohki

    (Graduate School of Medical Sciences, Kyushu University
    CREST, Japan Science and Technology Agency
    The University of Tokyo School of Medicine)

Abstract

A minicolumn is the smallest anatomical module in the cortical architecture, but it is still in debate whether it serves as functional units for cortical processing. In the rodent primary visual cortex (V1), neurons with different preferred orientations are mixed horizontally in a salt and pepper manner, but vertical functional organization was not examined. In this study, we found that neurons with similar orientation preference are weakly but significantly clustered vertically in a short length and horizontally in the scale of a minicolumn. Interestingly, the vertical clustering is found only in a part of minicolumns, and others are composed of neurons with a variety of orientation preferences. Thus, the mouse V1 is a mixture of vertical clusters of neurons with various degrees of orientation similarity, which may be the compromise between the brain size and keeping the vertical clusters of similarly tuned neurons at least in a subset of clusters.

Suggested Citation

  • Satoru Kondo & Takashi Yoshida & Kenichi Ohki, 2016. "Mixed functional microarchitectures for orientation selectivity in the mouse primary visual cortex," Nature Communications, Nature, vol. 7(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13210
    DOI: 10.1038/ncomms13210
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13210
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. L. Amengual & F. Di Bello & S. Ben Hadj Hassen & Suliann Ben Hamed, 2022. "Distractibility and impulsivity neural states are distinct from selective attention and modulate the implementation of spatial attention," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Han Chin Wang & Amy M. LeMessurier & Daniel E. Feldman, 2022. "Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Andrés Ruiz-Tagle Palazuelos & Enrique López Droguett & Rodrigo Pascual, 2020. "A novel deep capsule neural network for remaining useful life estimation," Journal of Risk and Reliability, , vol. 234(1), pages 151-167, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.