IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11442.html
   My bibliography  Save this article

Fast electronic resistance switching involving hidden charge density wave states

Author

Listed:
  • I. Vaskivskyi

    (Complex matter F7, Jozef Stefan Institute
    Faculty of Mathematics and Physics, University of Ljubljana)

  • I. A. Mihailovic

    (Complex matter F7, Jozef Stefan Institute
    Faculty of Electrical Engineering, University of Ljubljana)

  • S. Brazovskii

    (LPTMS-CNRS
    National University of Science and Technology MISiS)

  • J. Gospodaric

    (Complex matter F7, Jozef Stefan Institute)

  • T. Mertelj

    (Complex matter F7, Jozef Stefan Institute)

  • D. Svetin

    (Complex matter F7, Jozef Stefan Institute)

  • P. Sutar

    (Complex matter F7, Jozef Stefan Institute)

  • D. Mihailovic

    (Complex matter F7, Jozef Stefan Institute
    Faculty of Mathematics and Physics, University of Ljubljana
    Jozef Stefan International Postgraduate School)

Abstract

The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T–TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

Suggested Citation

  • I. Vaskivskyi & I. A. Mihailovic & S. Brazovskii & J. Gospodaric & T. Mertelj & D. Svetin & P. Sutar & D. Mihailovic, 2016. "Fast electronic resistance switching involving hidden charge density wave states," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11442
    DOI: 10.1038/ncomms11442
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11442
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaka Vodeb & Michele Diego & Yevhenii Vaskivskyi & Leonard Logaric & Yaroslav Gerasimenko & Viktor Kabanov & Benjamin Lipovsek & Marko Topic & Dragan Mihailovic, 2024. "Non-equilibrium quantum domain reconfiguration dynamics in a two-dimensional electronic crystal and a quantum annealer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Samra Husremović & Berit H. Goodge & Matthew P. Erodici & Katherine Inzani & Alberto Mier & Stephanie M. Ribet & Karen C. Bustillo & Takashi Taniguchi & Kenji Watanabe & Colin Ophus & Sinéad M. Griffi, 2023. "Encoding multistate charge order and chirality in endotaxial heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Anze Mraz & Michele Diego & Andrej Kranjec & Jaka Vodeb & Peter Karpov & Yaroslav Gerasimenko & Jan Ravnik & Yevhenii Vaskivskyi & Rok Venturini & Viktor Kabanov & Benjamin Lipovšek & Marko Topič & Ig, 2023. "Manipulation of fractionalized charge in the metastable topologically entangled state of a doped Wigner crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Dohyun Kim & Eui-Cheol Shin & Yongjoon Lee & Young Hee Lee & Mali Zhao & Yong-Hyun Kim & Heejun Yang, 2022. "Atomic-scale thermopower in charge density wave states," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Yan Zhao & Zhengwei Nie & Hao Hong & Xia Qiu & Shiyi Han & Yue Yu & Mengxi Liu & Xiaohui Qiu & Kaihui Liu & Sheng Meng & Lianming Tong & Jin Zhang, 2023. "Spectroscopic visualization and phase manipulation of chiral charge density waves in 1T-TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. James L. Hart & Saif Siddique & Noah Schnitzer & Stephen D. Funni & Lena F. Kourkoutis & Judy J. Cha, 2023. "In operando cryo-STEM of pulse-induced charge density wave switching in TaS2," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Suk Hyun Sung & Nishkarsh Agarwal & Ismail El Baggari & Patrick Kezer & Yin Min Goh & Noah Schnitzer & Jeremy M. Shen & Tony Chiang & Yu Liu & Wenjian Lu & Yuping Sun & Lena F. Kourkoutis & John T. He, 2024. "Endotaxial stabilization of 2D charge density waves with long-range order," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Nguyen Nhat Quyen & Wen-Yen Tzeng & Chih-En Hsu & I-An Lin & Wan-Hsin Chen & Hao-Hsiang Jia & Sheng-Chiao Wang & Cheng-En Liu & Yu-Sheng Chen & Wei-Liang Chen & Ta-Lei Chou & I-Ta Wang & Chia-Nung Kuo, 2024. "Three-dimensional ultrafast charge-density-wave dynamics in CuTe," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.