IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10995.html
   My bibliography  Save this article

Optically responsive supramolecular polymer glasses

Author

Listed:
  • Diederik W. R. Balkenende

    (Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4)

  • Christophe A. Monnier

    (Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4)

  • Gina L. Fiore

    (Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4)

  • Christoph Weder

    (Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4)

Abstract

The reversible and dynamic nature of non-covalent interactions between the constituting building blocks renders many supramolecular polymers stimuli-responsive. This was previously exploited to create thermally and optically healable polymers, but it proved challenging to achieve high stiffness and good healability. Here we present a glass-forming supramolecular material that is based on a trifunctional low-molecular-weight monomer ((UPyU)3TMP). Carrying three ureido-4-pyrimidinone (UPy) groups, (UPyU)3TMP forms a dynamic supramolecular polymer network, whose properties are governed by its cross-linked architecture and the large content of the binding motif. This design promotes the formation of a disordered glass, which, in spite of the low molecular weight of the building block, displays typical polymeric behaviour. The material exhibits a high stiffness and offers excellent coating and adhesive properties. On account of reversible dissociation and the formation of a low-viscosity liquid upon irradiation with ultraviolet light, rapid optical healing as well as (de)bonding on demand is possible.

Suggested Citation

  • Diederik W. R. Balkenende & Christophe A. Monnier & Gina L. Fiore & Christoph Weder, 2016. "Optically responsive supramolecular polymer glasses," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10995
    DOI: 10.1038/ncomms10995
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10995
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Chen & Yiyang Gao & Lei Shi & Wei Yu & Zongjie Sun & Yifan Zhou & Shuang Liu & Heng Mao & Dongyang Zhang & Tongqing Lu & Quan Chen & Demei Yu & Shujiang Ding, 2022. "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Benjamin Klemm & Reece W. Lewis & Irene Piergentili & Rienk Eelkema, 2022. "Temporally programmed polymer – solvent interactions using a chemical reaction network," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Fei Nie & Ke-Zhi Wang & Dongpeng Yan, 2023. "Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal–organic complexes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Changyong Cai & Shuanggen Wu & Yunfei Zhang & Fenfang Li & Zhijian Tan & Shengyi Dong, 2024. "Bulk transparent supramolecular glass enabled by host–guest molecular recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Ambler, Kate & de Brauw, Alan & Herskowitz, Sylvan & Pulido, Cristhian, 2023. "Viewpoint: Finance needs of the agricultural midstream," Food Policy, Elsevier, vol. 121(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.