Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation
Author
Abstract
Suggested Citation
DOI: 10.1038/ncomms10948
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fabian Wirth & Fabrice D. Heitz & Christine Seeger & Ioana Combaluzier & Karin Breu & Heather C. Denroche & Julien Thevenet & Melania Osto & Paolo Arosio & Julie Kerr-Conte & C. Bruce Verchere & Franç, 2023. "A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Sarah G. Heath & Shelby G. Gray & Emilie M. Hamzah & Karina M. O’Connor & Stephanie M. Bozonet & Alex D. Botha & Pierre Cordovez & Nicholas J. Magon & Jennifer D. Naughton & Dylan L. W. Goldsmith & Ab, 2024. "Amyloid formation and depolymerization of tumor suppressor p16INK4a are regulated by a thiol-dependent redox mechanism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Rakesh Kumar & Tanguy Marchand & Laurène Adam & Raitis Bobrovs & Gefei Chen & Jēkabs Fridmanis & Nina Kronqvist & Henrik Biverstål & Kristaps Jaudzems & Jan Johansson & Guido Pintacuda & Axel Abelein, 2024. "Identification of potential aggregation hotspots on Aβ42 fibrils blocked by the anti-amyloid chaperone-like BRICHOS domain," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Ricarda Törner & Tatsiana Kupreichyk & Lothar Gremer & Elisa Colas Debled & Daphna Fenel & Sarah Schemmert & Pierre Gans & Dieter Willbold & Guy Schoehn & Wolfgang Hoyer & Jerome Boisbouvier, 2022. "Structural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10948. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.