IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49581-7.html
   My bibliography  Save this article

Amyloid formation and depolymerization of tumor suppressor p16INK4a are regulated by a thiol-dependent redox mechanism

Author

Listed:
  • Sarah G. Heath

    (University of Otago)

  • Shelby G. Gray

    (University of Canterbury)

  • Emilie M. Hamzah

    (University of Canterbury)

  • Karina M. O’Connor

    (University of Otago)

  • Stephanie M. Bozonet

    (University of Otago)

  • Alex D. Botha

    (University of Otago)

  • Pierre Cordovez

    (University of Otago)

  • Nicholas J. Magon

    (University of Otago)

  • Jennifer D. Naughton

    (University of Otago)

  • Dylan L. W. Goldsmith

    (University of Canterbury)

  • Abigail J. Schwartfeger

    (University of Canterbury)

  • Margaret Sunde

    (The University of Sydney)

  • Alexander K. Buell

    (Technical University of Denmark)

  • Vanessa K. Morris

    (University of Canterbury
    University of Canterbury)

  • Christoph Göbl

    (University of Otago
    University of Canterbury)

Abstract

The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.

Suggested Citation

  • Sarah G. Heath & Shelby G. Gray & Emilie M. Hamzah & Karina M. O’Connor & Stephanie M. Bozonet & Alex D. Botha & Pierre Cordovez & Nicholas J. Magon & Jennifer D. Naughton & Dylan L. W. Goldsmith & Ab, 2024. "Amyloid formation and depolymerization of tumor suppressor p16INK4a are regulated by a thiol-dependent redox mechanism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49581-7
    DOI: 10.1038/s41467-024-49581-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49581-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49581-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paolo Arosio & Thomas C. T. Michaels & Sara Linse & Cecilia Månsson & Cecilia Emanuelsson & Jenny Presto & Jan Johansson & Michele Vendruscolo & Christopher M. Dobson & Tuomas P. J. Knowles, 2016. "Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Fabian Wirth & Fabrice D. Heitz & Christine Seeger & Ioana Combaluzier & Karin Breu & Heather C. Denroche & Julien Thevenet & Melania Osto & Paolo Arosio & Julie Kerr-Conte & C. Bruce Verchere & Franç, 2023. "A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Rakesh Kumar & Tanguy Marchand & Laurène Adam & Raitis Bobrovs & Gefei Chen & Jēkabs Fridmanis & Nina Kronqvist & Henrik Biverstål & Kristaps Jaudzems & Jan Johansson & Guido Pintacuda & Axel Abelein, 2024. "Identification of potential aggregation hotspots on Aβ42 fibrils blocked by the anti-amyloid chaperone-like BRICHOS domain," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ricarda Törner & Tatsiana Kupreichyk & Lothar Gremer & Elisa Colas Debled & Daphna Fenel & Sarah Schemmert & Pierre Gans & Dieter Willbold & Guy Schoehn & Wolfgang Hoyer & Jerome Boisbouvier, 2022. "Structural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49581-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.