IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9843.html
   My bibliography  Save this article

Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes

Author

Listed:
  • Serban L. Ilca

    (Wellcome Trust Centre for Human Genetics, University of Oxford)

  • Abhay Kotecha

    (Wellcome Trust Centre for Human Genetics, University of Oxford)

  • Xiaoyu Sun

    (University of Helsinki)

  • Minna M. Poranen

    (University of Helsinki)

  • David I. Stuart

    (Wellcome Trust Centre for Human Genetics, University of Oxford
    Diamond Light Source, Harwell Science and Innovation Campus)

  • Juha T. Huiskonen

    (Wellcome Trust Centre for Human Genetics, University of Oxford)

Abstract

Electron cryomicroscopy can yield near-atomic resolution structures of highly ordered macromolecular complexes. Often however some subunits bind in a flexible manner, have different symmetry from the rest of the complex, or are present in sub-stoichiometric amounts, limiting the attainable resolution. Here we report a general method for the localized three-dimensional reconstruction of such subunits. After determining the particle orientations, local areas corresponding to the subunits can be extracted and treated as single particles. We demonstrate the method using three examples including a flexible assembly and complexes harbouring subunits with either partial occupancy or mismatched symmetry. Most notably, the method allows accurate fitting of the monomeric RNA-dependent RNA polymerase bound at the threefold axis of symmetry inside a viral capsid, revealing for the first time its exact orientation and interactions with the capsid proteins. Localized reconstruction is expected to provide novel biological insights in a range of challenging biological systems.

Suggested Citation

  • Serban L. Ilca & Abhay Kotecha & Xiaoyu Sun & Minna M. Poranen & David I. Stuart & Juha T. Huiskonen, 2015. "Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9843
    DOI: 10.1038/ncomms9843
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9843
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guosong Wang & Zhenghui Zha & Pengfei Huang & Hui Sun & Yang Huang & Maozhou He & Tian Chen & Lina Lin & Zhenqin Chen & Zhibo Kong & Yuqiong Que & Tingting Li & Ying Gu & Hai Yu & Jun Zhang & Qingbing, 2022. "Structures of pseudorabies virus capsids," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Charles Bayly-Jones & Christopher J. Lupton & Claudia Fritz & Hariprasad Venugopal & Daniel Ramsbeck & Michael Wermann & Christian Jäger & Alex Marco & Stephan Schilling & Dagmar Schlenzig & James C. , 2022. "Helical ultrastructure of the metalloprotease meprin α in complex with a small molecule inhibitor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Zhihai Li & Jingjing Pang & Rongchao Gao & Qingxia Wang & Maoyan Zhang & Xuekui Yu, 2023. "Cryo-electron microscopy structures of capsids and in situ portals of DNA-devoid capsids of human cytomegalovirus," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yi-Nan Zhang & Jennifer Paynter & Aleksandar Antanasijevic & Joel D. Allen & Mor Eldad & Yi-Zong Lee & Jeffrey Copps & Maddy L. Newby & Linling He & Deborah Chavez & Pat Frost & Anna Goodroe & John Du, 2023. "Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimers as HIV-1 vaccine candidates," Nature Communications, Nature, vol. 14(1), pages 1-29, December.
    5. Nejc Kejzar & Elina Laanto & Ilona Rissanen & Vahid Abrishami & Muniyandi Selvaraj & Sylvain Moineau & Janne Ravantti & Lotta-Riina Sundberg & Juha T. Huiskonen, 2022. "Cryo-EM structure of ssDNA bacteriophage ΦCjT23 provides insight into early virus evolution," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Fenglin Li & Chun-Feng David Hou & Ravi K. Lokareddy & Ruoyu Yang & Francesca Forti & Federica Briani & Gino Cingolani, 2023. "High-resolution cryo-EM structure of the Pseudomonas bacteriophage E217," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.