IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7343.html
   My bibliography  Save this article

Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes

Author

Listed:
  • Ardalan Armin

    (Centre for Organic Photonics & Electronics, School of Mathematics and Physics and School of Chemistry and Molecular Biosciences, The University of Queensland)

  • Ross D. Jansen-van Vuuren

    (Centre for Organic Photonics & Electronics, School of Mathematics and Physics and School of Chemistry and Molecular Biosciences, The University of Queensland)

  • Nikos Kopidakis

    (National Renewable Energy Laboratory)

  • Paul L. Burn

    (Centre for Organic Photonics & Electronics, School of Mathematics and Physics and School of Chemistry and Molecular Biosciences, The University of Queensland)

  • Paul Meredith

    (Centre for Organic Photonics & Electronics, School of Mathematics and Physics and School of Chemistry and Molecular Biosciences, The University of Queensland)

Abstract

Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is material-agnostic and applicable to other disordered and polycrystalline semiconductors.

Suggested Citation

  • Ardalan Armin & Ross D. Jansen-van Vuuren & Nikos Kopidakis & Paul L. Burn & Paul Meredith, 2015. "Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7343
    DOI: 10.1038/ncomms7343
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7343
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Kublitski & Axel Fischer & Shen Xing & Lukasz Baisinger & Eva Bittrich & Donato Spoltore & Johannes Benduhn & Koen Vandewal & Karl Leo, 2021. "Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Zhenghao Long & Xiao Qiu & Chak Lam Jonathan Chan & Zhibo Sun & Zhengnan Yuan & Swapnadeep Poddar & Yuting Zhang & Yucheng Ding & Leilei Gu & Yu Zhou & Wenying Tang & Abhishek Kumar Srivastava & Cunji, 2023. "A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Quan Liu & Stefan Zeiske & Xueshi Jiang & Derese Desta & Sigurd Mertens & Sam Gielen & Rachith Shanivarasanthe & Hans-Gerd Boyen & Ardalan Armin & Koen Vandewal, 2022. "Electron-donating amine-interlayer induced n-type doping of polymer:nonfullerene blends for efficient narrowband near-infrared photo-detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.