IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24500-2.html
   My bibliography  Save this article

Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors

Author

Listed:
  • Jonas Kublitski

    (Technische Universität Dresden)

  • Axel Fischer

    (Technische Universität Dresden)

  • Shen Xing

    (Technische Universität Dresden)

  • Lukasz Baisinger

    (Technische Universität Dresden)

  • Eva Bittrich

    (Leibniz-Institut für Polymerforschung Dresden e.V.)

  • Donato Spoltore

    (Technische Universität Dresden)

  • Johannes Benduhn

    (Technische Universität Dresden)

  • Koen Vandewal

    (Hasselt University)

  • Karl Leo

    (Technische Universität Dresden
    Technische Universität Dresden)

Abstract

Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at −10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.

Suggested Citation

  • Jonas Kublitski & Axel Fischer & Shen Xing & Lukasz Baisinger & Eva Bittrich & Donato Spoltore & Johannes Benduhn & Koen Vandewal & Karl Leo, 2021. "Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24500-2
    DOI: 10.1038/s41467-021-24500-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24500-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24500-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ardalan Armin & Ross D. Jansen-van Vuuren & Nikos Kopidakis & Paul L. Burn & Paul Meredith, 2015. "Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenghao Long & Xiao Qiu & Chak Lam Jonathan Chan & Zhibo Sun & Zhengnan Yuan & Swapnadeep Poddar & Yuting Zhang & Yucheng Ding & Leilei Gu & Yu Zhou & Wenying Tang & Abhishek Kumar Srivastava & Cunji, 2023. "A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Quan Liu & Stefan Zeiske & Xueshi Jiang & Derese Desta & Sigurd Mertens & Sam Gielen & Rachith Shanivarasanthe & Hans-Gerd Boyen & Ardalan Armin & Koen Vandewal, 2022. "Electron-donating amine-interlayer induced n-type doping of polymer:nonfullerene blends for efficient narrowband near-infrared photo-detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24500-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.