IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms10104.html
   My bibliography  Save this article

Positive-bias gate-controlled metal–insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics

Author

Listed:
  • Takeaki Yajima

    (The University of Tokyo
    JST-CREST)

  • Tomonori Nishimura

    (The University of Tokyo
    JST-CREST)

  • Akira Toriumi

    (The University of Tokyo
    JST-CREST)

Abstract

The next generation of electronics is likely to incorporate various functional materials, including those exhibiting ferroelectricity, ferromagnetism and metal–insulator transitions. Metal–insulator transitions can be controlled by electron doping, and so incorporating such a material in transistor channels will enable us to significantly modulate transistor current. However, such gate-controlled metal–insulator transitions have been challenging because of the limited number of electrons accumulated by gate dielectrics, or possible electrochemical reaction in ionic liquid gate. Here we achieve a positive-bias gate-controlled metal–insulator transition near the transition temperature. A significant number of electrons were accumulated via a high-permittivity TiO2 gate dielectric with subnanometre equivalent oxide thickness in the inverse-Schottky-gate geometry. An abrupt transition in the VO2 channel is further exploited, leading to a significant current modulation far beyond the capacitive coupling. This solid-state operation enables us to discuss the electrostatic mechanism as well as the collective nature of gate-controlled metal–insulator transitions, paving the pathway for developing functional field effect transistors.

Suggested Citation

  • Takeaki Yajima & Tomonori Nishimura & Akira Toriumi, 2015. "Positive-bias gate-controlled metal–insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10104
    DOI: 10.1038/ncomms10104
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10104
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Yukawa & M. Kobayashi & T. Kanda & D. Shiga & K. Yoshimatsu & S. Ishibashi & M. Minohara & M. Kitamura & K. Horiba & A. F. Santander-Syro & H. Kumigashira, 2021. "Resonant tunneling driven metal-insulator transition in double quantum-well structures of strongly correlated oxide," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Debasish Mondal & Smruti Rekha Mahapatra & Abigail M. Derrico & Rajeev Kumar Rai & Jay R. Paudel & Christoph Schlueter & Andrei Gloskovskii & Rajdeep Banerjee & Atsushi Hariki & Frank M. F. DeGroot & , 2023. "Modulation-doping a correlated electron insulator," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.