IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6486.html
   My bibliography  Save this article

TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis

Author

Listed:
  • Aissam Ikmi

    (Stowers Institute for Medical Research)

  • Sean A. McKinney

    (Stowers Institute for Medical Research)

  • Kym M. Delventhal

    (Stowers Institute for Medical Research)

  • Matthew C. Gibson

    (Stowers Institute for Medical Research
    University of Kansas School of Medicine)

Abstract

Non-bilaterian phyla represent key lineages for exploring the evolutionary history of early animals. However, despite an increasing number of sequenced genomes from early-branching metazoans, efficient and reproducible methodologies for analysis of gene function remain a major challenge. Here we report the utilization of the TALEN and CRISPR/Cas9 systems to induce targeted mutations and homologous recombination-mediated transgenesis in the sea anemone Nematostella vectensis. We also present a new method to isolate genetically modified animals using engineered selection cassettes introduced by homologous recombination. Taken together, these methods will permit sophisticated gain- and loss-of-function analyses in Nematostella and perhaps other early metazoan species that allow for zygotic injection.

Suggested Citation

  • Aissam Ikmi & Sean A. McKinney & Kym M. Delventhal & Matthew C. Gibson, 2014. "TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6486
    DOI: 10.1038/ncomms6486
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6486
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christine Guzman & Kurato Mohri & Ryotaro Nakamura & Minato Miyake & Yuko Tsuchiya & Kentaro Tomii & Hiroshi Watanabe, 2024. "Neuronal and non-neuronal functions of the synaptic cell adhesion molecule neurexin in Nematostella vectensis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Leslie S. Babonis & Camille Enjolras & Abigail J. Reft & Brent M. Foster & Fredrik Hugosson & Joseph F. Ryan & Marymegan Daly & Mark Q. Martindale, 2023. "Single-cell atavism reveals an ancient mechanism of cell type diversification in a sea anemone," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.