IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3487.html
   My bibliography  Save this article

Graphene-based in-plane micro-supercapacitors with high power and energy densities

Author

Listed:
  • Zhong–Shuai Wu

    (Max-Planck-Institut für Polymerforschung)

  • Khaled Parvez

    (Max-Planck-Institut für Polymerforschung)

  • Xinliang Feng

    (Max-Planck-Institut für Polymerforschung)

  • Klaus Müllen

    (Max-Planck-Institut für Polymerforschung)

Abstract

Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.

Suggested Citation

  • Zhong–Shuai Wu & Khaled Parvez & Xinliang Feng & Klaus Müllen, 2013. "Graphene-based in-plane micro-supercapacitors with high power and energy densities," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3487
    DOI: 10.1038/ncomms3487
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3487
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ying & Liu, Lianchao & Huang, Yue & Cao, Haidong & Liu, Tiantian & Qi, Zhixian & Hu, Jingwen & Guo, Yonggui & Sun, Jianteng & Liang, Maofeng & Wei, Junfu & Zhang, Huan & Zhang, Xiaoqing & Wang, , 2024. "Low-salt organohydrogel electrolytes for wide-potential-window flexible all-solid-state supercapacitors," Applied Energy, Elsevier, vol. 363(C).
    2. Zhang, Xingyan & Zhao, Wen & Wei, Lu & Jin, Yiyi & Hou, Jie & Wang, Xiaoxue & Guo, Xin, 2019. "In-plane flexible solid-state microsupercapacitors for on-chip electronics," Energy, Elsevier, vol. 170(C), pages 338-348.
    3. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    4. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    5. Zhou, Man & Li, Kai & Hu, Jinguang & Tang, Liping & Li, Mingliu & Su, Lifang & Zhao, Hong & Ko, Frank & Cai, Zaisheng & Zhao, Yaping, 2022. "Sustainable production of oxygen-rich hierarchically porous carbon network from corn straw lignin and silk degumming wastewater for high-performance electrochemical energy storage," Renewable Energy, Elsevier, vol. 191(C), pages 141-150.
    6. Di Wei & Feiyao Yang & Zhuoheng Jiang & Zhonglin Wang, 2022. "Flexible iontronics based on 2D nanofluidic material," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.