IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2024.html
   My bibliography  Save this article

Exploiting multimode waveguides for pure fibre-based imaging

Author

Listed:
  • Tomáš Čižmár

    (School of Medicine, University of St. Andrews, North Haugh, St. Andrews KY16 9TF, UK.)

  • Kishan Dholakia

    (SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK.)

Abstract

There has been an immense drive in modern microscopy towards miniaturization and fibre-based technology. This has been necessitated by the need to access hostile or difficult environments in situ and in vivo. Strategies to date have included the use of specialist fibres and miniaturized scanning systems accompanied by ingenious microfabricated lenses. Here we present a novel approach for this field by utilizing disordered light within a standard multimode optical fibre for lensless microscopy and optical mode conversion. We demonstrate the modalities of bright- and dark-field imaging and scanning fluorescence microscopy at acquisition rates that allow observation of dynamic processes such as Brownian motion of mesoscopic particles. Furthermore, we show how such control can realize a new form of mode converter and generate various types of advanced light fields such as propagation-invariant beams and optical vortices. These may be useful for future fibre-based implementations of super-resolution or light-sheet microscopy.

Suggested Citation

  • Tomáš Čižmár & Kishan Dholakia, 2012. "Exploiting multimode waveguides for pure fibre-based imaging," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2024
    DOI: 10.1038/ncomms2024
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2024
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo Gutiérrez-Cuevas & Dorian Bouchet & Julien Rosny & Sébastien M. Popoff, 2024. "Reaching the precision limit with tensor-based wavefront shaping," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Miroslav Stibůrek & Petra Ondráčková & Tereza Tučková & Sergey Turtaev & Martin Šiler & Tomáš Pikálek & Petr Jákl & André Gomes & Jana Krejčí & Petra Kolbábková & Hana Uhlířová & Tomáš Čižmár, 2023. "110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Wonjun Choi & Munkyu Kang & Jin Hee Hong & Ori Katz & Byunghak Lee & Guang Hoon Kim & Youngwoon Choi & Wonshik Choi, 2022. "Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Ziwei Li & Wei Zhou & Zhanhong Zhou & Shuqi Zhang & Jianyang Shi & Chao Shen & Junwen Zhang & Nan Chi & Qionghai Dai, 2024. "Self-supervised dynamic learning for long-term high-fidelity image transmission through unstabilized diffusive media," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Noam Badt & Ori Katz, 2022. "Real-time holographic lensless micro-endoscopy through flexible fibers via fiber bundle distal holography," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.