IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57040-0.html
   My bibliography  Save this article

Distorted learning from local metacognition supports transdiagnostic underconfidence

Author

Listed:
  • Sucharit Katyal

    (University College London
    University of Copenhagen)

  • Quentin JM Huys

    (University College London
    University College London
    University College London)

  • Raymond J. Dolan

    (University College London
    University College London)

  • Stephen M. Fleming

    (University College London
    University College London
    University College London)

Abstract

Individuals experiencing symptoms of anxiety and depression have been shown to exhibit persistent underconfidence. The origin of such metacognitive biases presents a puzzle, given that individuals should be able to learn appropriate levels of confidence from observing their own performance. In two large general population samples (N = 230 and N = 278), we measure both 'local' confidence in individual task instances and 'global' confidence as longer-run self-performance estimates while manipulating external feedback. Global confidence is sensitive to both local confidence and feedback valence—more frequent positive (negative) feedback increases (respectively decreases) global confidence, with asymmetries in feedback also leading to shifts in affective self-beliefs. Notably, however, global confidence exhibits reduced sensitivity to instances of higher local confidence in individuals with greater subclinical anxious-depression symptomatology, despite sensitivity to feedback valence remaining intact. Our finding of blunted sensitivity to increases in local confidence offers a mechanistic basis for how persistent underconfidence is maintained in the face of intact performance.

Suggested Citation

  • Sucharit Katyal & Quentin JM Huys & Raymond J. Dolan & Stephen M. Fleming, 2025. "Distorted learning from local metacognition supports transdiagnostic underconfidence," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57040-0
    DOI: 10.1038/s41467-025-57040-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57040-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57040-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon Ciranka & Juan Linde-Domingo & Ivan Padezhki & Clara Wicharz & Charley M. Wu & Bernhard Spitzer, 2022. "Asymmetric reinforcement learning facilitates human inference of transitive relations," Nature Human Behaviour, Nature, vol. 6(4), pages 555-564, April.
    2. Philipp Koellinger & Theresa Treffers, 2015. "Joy Leads to Overconfidence, and a Simple Countermeasure," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-22, December.
    3. Germain Lefebvre & Maël Lebreton & Florent Meyniel & Sacha Bourgeois-Gironde & Stefano Palminteri, 2017. "Behavioural and neural characterization of optimistic reinforcement learning," Nature Human Behaviour, Nature, vol. 1(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel J. Benjamin, 2018. "Errors in Probabilistic Reasoning and Judgment Biases," NBER Working Papers 25200, National Bureau of Economic Research, Inc.
    2. Maël Lebreton & Karin Bacily & Stefano Palminteri & Jan B Engelmann, 2019. "Contextual influence on confidence judgments in human reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    3. Filip Gesiarz & Donal Cahill & Tali Sharot, 2019. "Evidence accumulation is biased by motivation: A computational account," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-15, June.
    4. Stefano Palminteri & Germain Lefebvre & Emma J Kilford & Sarah-Jayne Blakemore, 2017. "Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-22, August.
    5. Johann Lussange & Boris Gutkin, 2023. "Order book regulatory impact on stock market quality: a multi-agent reinforcement learning perspective," Papers 2302.04184, arXiv.org.
    6. Anna P. Giron & Simon Ciranka & Eric Schulz & Wouter Bos & Azzurra Ruggeri & Björn Meder & Charley M. Wu, 2023. "Developmental changes in exploration resemble stochastic optimization," Nature Human Behaviour, Nature, vol. 7(11), pages 1955-1967, November.
    7. Xinyi Li & Yinchuan Li & Yuancheng Zhan & Xiao-Yang Liu, 2019. "Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation," Papers 1907.01503, arXiv.org.
    8. Aurélien Nioche & Basile Garcia & Germain Lefebvre & Thomas Boraud & Nicolas P. Rougier & Sacha Bourgeois-Gironde, 2019. "Coordination over a unique medium of exchange under information scarcity," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    9. Riccardo Bruni & Alessandro Gioffré & Maria Marino, 2022. ""In-group bias in preferences for redistribution: a survey experiment in Italy"," IREA Working Papers 202223, University of Barcelona, Research Institute of Applied Economics, revised Nov 2023.
    10. R Becket Ebitz & Brianna J Sleezer & Hank P Jedema & Charles W Bradberry & Benjamin Y Hayden, 2019. "Tonic exploration governs both flexibility and lapses," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-37, November.
    11. C. A. Tapia Cortez & J. Coulton & C. Sammut & S. Saydam, 2018. "Determining the chaotic behaviour of copper prices in the long-term using annual price data," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-13, December.
    12. Chuang, Yi-Wei & Tsai, Wei-Che & Weng, Pei-Shih, 2020. "The impact of weather on order submissions and trading performance," Pacific-Basin Finance Journal, Elsevier, vol. 64(C).
    13. Johann Lussange & Stefano Vrizzi & Stefano Palminteri & Boris Gutkin, 2024. "Modelling crypto markets by multi-agent reinforcement learning," Papers 2402.10803, arXiv.org.
    14. Johann Lussange & Stefano Vrizzi & Stefano Palminteri & Boris Gutkin, 2024. "Mesoscale effects of trader learning behaviors in financial markets: A multi-agent reinforcement learning study," Post-Print hal-04790290, HAL.
    15. Chih-Chung Ting & Nahuel Salem-Garcia & Stefano Palminteri & Jan B. Engelmann & Maël Lebreton, 2023. "Neural and computational underpinnings of biased confidence in human reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    17. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    18. Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
    19. Sudipta Mukherjee, 2022. "Consumer altruism and risk taking: why do altruistic consumers take more risks?," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 19(4), pages 781-803, December.
    20. Hu Sun & Yun Wang, 2019. "Do On-lookers See Most of the Game? Evaluating Job-seekers' Competitiveness of Oneself versus of Others in a Labor Market Experiment," Working Papers 2019-07-11, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57040-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.