IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56998-1.html
   My bibliography  Save this article

Neuronal hyperactivity in neurons derived from individuals with gray matter heterotopia

Author

Listed:
  • Francesco Matteo

    (Ludwig-Maximilians-University (LMU)
    International Max Planck Research School for Translational Psychiatry (IMPRS-TP)
    Max Planck Institute of Psychiatry)

  • Rebecca Bonrath

    (Ludwig-Maximilians-University (LMU))

  • Veronica Pravata

    (Ludwig-Maximilians-University (LMU))

  • Hanna Schmidt

    (Max Planck Institute of Psychiatry)

  • Ane Cristina Ayo Martin

    (International Max Planck Research School for Translational Psychiatry (IMPRS-TP)
    Max Planck Institute of Psychiatry)

  • Rossella Giaimo

    (Ludwig-Maximilians-University (LMU)
    Max Planck Institute of Psychiatry
    University Federico II)

  • Danusa Menegaz

    (Max Planck Institute of Psychiatry)

  • Stephan Riesenberg

    (Max Planck Institute for Evolutionary Anthropology)

  • Femke M. S. Vrij

    (Erasmus MC University Medical Center
    Erasmus MC University Medical Center)

  • Giuseppina Maccarrone

    (Max Planck Institute of Psychiatry)

  • Maria Holzapfel

    (Max Planck Institute of Psychiatry)

  • Tobias Straub

    (Ludwig-Maximilians-University (LMU))

  • Steven A. Kushner

    (Erasmus MC University Medical Center
    Columbia University Medical Center)

  • Stephen P. Robertson

    (University of Otago)

  • Matthias Eder

    (Max Planck Institute of Psychiatry)

  • Silvia Cappello

    (Ludwig-Maximilians-University (LMU)
    Max Planck Institute of Psychiatry)

Abstract

Periventricular heterotopia (PH), a common form of gray matter heterotopia associated with developmental delay and drug-resistant seizures, poses a challenge in understanding its neurophysiological basis. Human cerebral organoids (hCOs) derived from patients with causative mutations in FAT4 or DCHS1 mimic PH features. However, neuronal activity in these 3D models has not yet been investigated. Here we show that silicon probe recordings reveal exaggerated spontaneous spike activity in FAT4 and DCHS1 hCOs, suggesting functional changes in neuronal networks. Transcriptome and proteome analyses identify changes in neuronal morphology and synaptic function. Furthermore, patch-clamp recordings reveal a decreased spike threshold specifically in DCHS1 neurons, likely due to increased somatic voltage-gated sodium channels. Additional analyses reveal increased morphological complexity of PH neurons and synaptic alterations contributing to hyperactivity, with rescue observed in DCHS1 neurons by wild-type DCHS1 expression. Overall, we provide new comprehensive insights into the cellular changes underlying symptoms of gray matter heterotopia.

Suggested Citation

  • Francesco Matteo & Rebecca Bonrath & Veronica Pravata & Hanna Schmidt & Ane Cristina Ayo Martin & Rossella Giaimo & Danusa Menegaz & Stephan Riesenberg & Femke M. S. Vrij & Giuseppina Maccarrone & Mar, 2025. "Neuronal hyperactivity in neurons derived from individuals with gray matter heterotopia," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56998-1
    DOI: 10.1038/s41467-025-56998-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56998-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56998-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giorgia Quadrato & Tuan Nguyen & Evan Z. Macosko & John L. Sherwood & Sung Min Yang & Daniel R. Berger & Natalie Maria & Jorg Scholvin & Melissa Goldman & Justin P. Kinney & Edward S. Boyden & Jeff W., 2017. "Cell diversity and network dynamics in photosensitive human brain organoids," Nature, Nature, vol. 545(7652), pages 48-53, May.
    2. Christina Kyrousi & Adam C. O’Neill & Agnieska Brazovskaja & Zhisong He & Pavel Kielkowski & Laure Coquand & Rossella Giaimo & Pierpaolo D’ Andrea & Alexander Belka & Andrea Forero Echeverry & Davide , 2021. "Extracellular LGALS3BP regulates neural progenitor position and relates to human cortical complexity," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Pagliaro & Roxy Finger & Iris Zoutendijk & Saskia Bunschuh & Hans Clevers & Delilah Hendriks & Benedetta Artegiani, 2023. "Temporal morphogen gradient-driven neural induction shapes single expanded neuroepithelium brain organoids with enhanced cortical identity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Anand Ramani & Giovanni Pasquini & Niklas J. Gerkau & Vaibhav Jadhav & Omkar Suhas Vinchure & Nazlican Altinisik & Hannes Windoffer & Sarah Muller & Ina Rothenaigner & Sean Lin & Aruljothi Mariappan &, 2024. "Reliability of high-quantity human brain organoids for modeling microcephaly, glioma invasion and drug screening," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Elaine T. Lim & Yingleong Chan & Pepper Dawes & Xiaoge Guo & Serkan Erdin & Derek J. C. Tai & Songlei Liu & Julia M. Reichert & Mannix J. Burns & Ying Kai Chan & Jessica J. Chiang & Katharina Meyer & , 2022. "Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yuge Wang & Hongyu Zhao, 2022. "Non-linear archetypal analysis of single-cell RNA-seq data by deep autoencoders," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-31, April.
    5. Yueqi Wang & Simone Chiola & Guang Yang & Chad Russell & Celeste J. Armstrong & Yuanyuan Wu & Jay Spampanato & Paisley Tarboton & H. M. Arif Ullah & Nicolas U. Edgar & Amelia N. Chang & David A. Harmi, 2022. "Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
    6. Madison N. Wilson & Martin Thunemann & Xin Liu & Yichen Lu & Francesca Puppo & Jason W. Adams & Jeong-Hoon Kim & Mehrdad Ramezani & Donald P. Pizzo & Srdjan Djurovic & Ole A. Andreassen & Abed AlFatah, 2022. "Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Tal Sharf & Tjitse Molen & Stella M. K. Glasauer & Elmer Guzman & Alessio P. Buccino & Gabriel Luna & Zhuowei Cheng & Morgane Audouard & Kamalini G. Ranasinghe & Kiwamu Kudo & Srikantan S. Nagarajan &, 2022. "Functional neuronal circuitry and oscillatory dynamics in human brain organoids," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Maisumu Gulimiheranmu & Shuang Li & Junmei Zhou, 2021. "In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids," IJERPH, MDPI, vol. 18(23), pages 1-14, November.
    9. Alessandro Fiorenzano & Edoardo Sozzi & Marcella Birtele & Janko Kajtez & Jessica Giacomoni & Fredrik Nilsson & Andreas Bruzelius & Yogita Sharma & Yu Zhang & Bengt Mattsson & Jenny Emnéus & Daniella , 2021. "Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    10. Enji Kim & Eunseon Jeong & Yeon-Mi Hong & Inhea Jeong & Junghoon Kim & Yong Won Kwon & Young-Geun Park & Jiin Lee & Suah Choi & Ju-Young Kim & Jae-Hyun Lee & Seung-Woo Cho & Jang-Ung Park, 2025. "Magnetically reshapable 3D multi-electrode arrays of liquid metals for electrophysiological analysis of brain organoids," Nature Communications, Nature, vol. 16(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56998-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.