IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56564-9.html
   My bibliography  Save this article

USP5 stabilizes YTHDF1 to control cancer immune surveillance through mTORC1-mediated phosphorylation

Author

Listed:
  • Na Shao

    (Chongqing Medical University)

  • Lei Xi

    (Hubei Minzu University)

  • Yangfan Lv

    (Third Military Medical University)

  • Muhammad Idris

    (Technology and Research (A*STAR))

  • Lin Zhang

    (Chongqing Medical University)

  • Ya Cao

    (Third Military Medical University)

  • Jingyi Xiang

    (Chongqing Medical University)

  • Xi Xu

    (Zhejiang University School of Medicine)

  • Belinda X. Ong

    (Technology and Research (A*STAR))

  • Qiongyi Zhang

    (Technology and Research (A*STAR))

  • Xu Peng

    (Technology and Research (A*STAR))

  • Xiaoyan Yue

    (Technology and Research (A*STAR))

  • Feng Xu

    (Technology and Research (A*STAR))

  • Chungang Liu

    (Chongqing Medical University)

Abstract

The N6-methyladenosine binding protein YTHDF1, often upregulated in cancer, promotes tumor growth and hinders immune checkpoint blockade treatment. A comprehensive understanding of the molecular mechanisms governing YTHDF1 protein stability is pivotal for enhancing clinical response rates and the effectiveness of immune checkpoint blockade in cancer patients. Here, we report that USP5 interacts with YTHDF1, stabilizing it by removing K11-linked polyubiquitination. Insulin activates mTORC1, phosphorylating USP5 and promoting its dimerization, which binds to and protects YTHDF1 from degradation. Conversely, the CUL7-FBXW8 E3 ligase promotes YTHDF1 degradation. Deficiency in YTHDF1 or USP5 increases PD-L1 expression and suppresses immune-related gene expression, facilitating immune evasion. Combining USP5 inhibition with anti-PD-L1 therapy enhances anti-tumor immunity, suggesting USP5 as a potential biomarker for patient stratification. This study reveals a ubiquitination-dependent regulation of YTHDF1, proposing USP5 inhibition alongside PD-(L)1 blockade as a promising cancer treatment strategy.

Suggested Citation

  • Na Shao & Lei Xi & Yangfan Lv & Muhammad Idris & Lin Zhang & Ya Cao & Jingyi Xiang & Xi Xu & Belinda X. Ong & Qiongyi Zhang & Xu Peng & Xiaoyan Yue & Feng Xu & Chungang Liu, 2025. "USP5 stabilizes YTHDF1 to control cancer immune surveillance through mTORC1-mediated phosphorylation," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56564-9
    DOI: 10.1038/s41467-025-56564-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56564-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56564-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wanzun Lin & Li Chen & Haojiong Zhang & Xianxin Qiu & Qingting Huang & Fangzhu Wan & Ziyu Le & Shikai Geng & Anlan Zhang & Sufang Qiu & Long Chen & Lin Kong & Jiade J. Lu, 2023. "Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Xiangling Xiao & Jie Shi & Chuan He & Xia Bu & Yishuang Sun & Minling Gao & Bolin Xiang & Wenjun Xiong & Panpan Dai & Qi Mao & Xixin Xing & Yingmeng Yao & Haisheng Yu & Gaoshan Xu & Siqi Li & Yan Ren , 2023. "ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Dali Han & Jun Liu & Chuanyuan Chen & Lihui Dong & Yi Liu & Renbao Chang & Xiaona Huang & Yuanyuan Liu & Jianying Wang & Urszula Dougherty & Marc B. Bissonnette & Bin Shen & Ralph R. Weichselbaum & Me, 2019. "Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells," Nature, Nature, vol. 566(7743), pages 270-274, February.
    4. Daniel S. Chen & Ira Mellman, 2017. "Elements of cancer immunity and the cancer–immune set point," Nature, Nature, vol. 541(7637), pages 321-330, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Pouyiourou & Bianca N. Kraft & Timothy Wohlfromm & Michael Stahl & Boris Kubuschok & Harald Löffler & Ulrich T. Hacker & Gerdt Hübner & Lena Weiss & Michael Bitzer & Thomas Ernst & Philipp Schüt, 2023. "Nivolumab and ipilimumab in recurrent or refractory cancer of unknown primary: a phase II trial," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    4. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Rui Liu & Zhi Ji & Xia Wang & Lila Zhu & Jiaqi Xin & Lijun Ma & Jiayu Zhang & Shaohua Ge & Le Zhang & Yuchong Yang & Tao Ning & Ming Bai & Jingjing Duan & Feixue Wang & Yansha Sun & Hongli Li & Ting D, 2025. "Regorafenib plus sintilimab as a salvage treatment for microsatellite stable metastatic colorectal cancer: a single-arm, open-label, phase II clinical trial," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Zhongwei Xin & Mingjie Lin & Zhixing Hao & Di Chen & Yongyuan Chen & Xiaoke Chen & Xia Xu & Jinfan Li & Dang Wu & Ying Chai & Pin Wu, 2022. "The immune landscape of human thymic epithelial tumors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Wanzun Lin & Li Chen & Haojiong Zhang & Xianxin Qiu & Qingting Huang & Fangzhu Wan & Ziyu Le & Shikai Geng & Anlan Zhang & Sufang Qiu & Long Chen & Lin Kong & Jiade J. Lu, 2023. "Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Weicai Huang & Yuming Jiang & Wenjun Xiong & Zepang Sun & Chuanli Chen & Qingyu Yuan & Kangneng Zhou & Zhen Han & Hao Feng & Hao Chen & Xiaokun Liang & Shitong Yu & Yanfeng Hu & Jiang Yu & Yan Chen & , 2022. "Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Christel F. A. Ramirez & Daniel Taranto & Masami Ando-Kuri & Marnix H. P. Groot & Efi Tsouri & Zhijie Huang & Daniel Groot & Roelof J. C. Kluin & Daan J. Kloosterman & Joanne Verheij & Jing Xu & Seren, 2024. "Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    12. Wen-Lan Yang & Weinan Qiu & Ting Zhang & Kai Xu & Zi-Juan Gu & Yu Zhou & Heng-Ji Xu & Zhong-Zhou Yang & Bin Shen & Yong-Liang Zhao & Qi Zhou & Ying Yang & Wei Li & Peng-Yuan Yang & Yun-Gui Yang, 2023. "Nsun2 coupling with RoRγt shapes the fate of Th17 cells and promotes colitis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Julia Joung & Paul C. Kirchgatterer & Ankita Singh & Jang H. Cho & Suchita P. Nety & Rebecca C. Larson & Rhiannon K. Macrae & Rebecca Deasy & Yuen-Yi Tseng & Marcela V. Maus & Feng Zhang, 2022. "CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Rocío Castellanos-Rueda & Raphaël B. Roberto & Florian Bieberich & Fabrice S. Schlatter & Darya Palianina & Oanh T. P. Nguyen & Edo Kapetanovic & Heinz Läubli & Andreas Hierlemann & Nina Khanna & Sai , 2022. "speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Stacy K. Thomas & Max M. Wattenberg & Shaanti Choi-Bose & Mark Uhlik & Ben Harrison & Heather Coho & Christopher R. Cassella & Meredith L. Stone & Dhruv Patel & Kelly Markowitz & Devora Delman & Micha, 2023. "Kupffer cells prevent pancreatic ductal adenocarcinoma metastasis to the liver in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Xiaona Chen & Fanchao Meng & Yiting Xu & Tongyu Li & Xiaolong Chen & Hangxiang Wang, 2023. "Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Hao Qin & Yang Chen & Zeming Wang & Nan Li & Qing Sun & Yixuan Lin & Wenyi Qiu & Yuting Qin & Long Chen & Hanqing Chen & Yiye Li & Jian Shi & Guangjun Nie & Ruifang Zhao, 2023. "Biosynthesized gold nanoparticles that activate Toll-like receptors and elicit localized light-converting hyperthermia for pleiotropic tumor immunoregulation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    18. Simona Pagliuca & Carmelo Gurnari & Colin Hercus & Sébastien Hergalant & Sanghee Hong & Adele Dhuyser & Maud D’Aveni & Alice Aarnink & Marie Thérèse Rubio & Pierre Feugier & Francesca Ferraro & Hetty , 2023. "Leukemia relapse via genetic immune escape after allogeneic hematopoietic cell transplantation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Praneeth R. Kuninty & Karin Binnemars-Postma & Ahmed Jarray & Kunal P. Pednekar & Marcel A. Heinrich & Helen J. Pijffers & Hetty Hoopen & Gert Storm & Peter Hoogevest & Wouter K. Otter & Jai Prakash, 2022. "Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Anwaar Saeed & Robin Park & Harsh Pathak & Ayah Nedal Al-Bzour & Junqiang Dai & Milind Phadnis & Raed Al-Rajabi & Anup Kasi & Joaquina Baranda & Weijing Sun & Stephen Williamson & Yu-Chiao Chiu & Hati, 2024. "Clinical and biomarker results from a phase II trial of combined cabozantinib and durvalumab in patients with chemotherapy-refractory colorectal cancer (CRC): CAMILLA CRC cohort," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56564-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.