IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32816-w.html
   My bibliography  Save this article

Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer

Author

Listed:
  • Weicai Huang

    (Southern Medical University
    Southern Medical University)

  • Yuming Jiang

    (Southern Medical University
    Southern Medical University)

  • Wenjun Xiong

    (the Second Affiliated Hospital of Guangzhou University of Chinese Medicine)

  • Zepang Sun

    (Southern Medical University
    Southern Medical University)

  • Chuanli Chen

    (Southern Medical University)

  • Qingyu Yuan

    (Southern Medical University)

  • Kangneng Zhou

    (University of Science and Technology Beijing)

  • Zhen Han

    (Southern Medical University
    Southern Medical University)

  • Hao Feng

    (Southern Medical University
    Southern Medical University)

  • Hao Chen

    (Southern Medical University
    Southern Medical University)

  • Xiaokun Liang

    (Chinese Academy of Sciences)

  • Shitong Yu

    (Southern Medical University
    Southern Medical University)

  • Yanfeng Hu

    (Southern Medical University
    Southern Medical University)

  • Jiang Yu

    (Southern Medical University
    Southern Medical University)

  • Yan Chen

    (Guangzhou University of Chinese Medicine)

  • Liying Zhao

    (Southern Medical University
    Southern Medical University)

  • Hao Liu

    (Southern Medical University
    Southern Medical University)

  • Zhiwei Zhou

    (Sun Yat-sen University Cancer Center
    Collaborative Innovation Center for Cancer Medicine)

  • Wei Wang

    (the Second Affiliated Hospital of Guangzhou University of Chinese Medicine)

  • Wei Wang

    (Sun Yat-sen University Cancer Center
    Collaborative Innovation Center for Cancer Medicine)

  • Yikai Xu

    (Southern Medical University)

  • Guoxin Li

    (Southern Medical University
    Southern Medical University)

Abstract

The tumor immune microenvironment (TIME) is associated with tumor prognosis and immunotherapy response. Here we develop and validate a CT-based radiomics score (RS) using 2272 gastric cancer (GC) patients to investigate the relationship between the radiomics imaging biomarker and the neutrophil-to-lymphocyte ratio (NLR) in the TIME, including its correlation with prognosis and immunotherapy response in advanced GC. The RS achieves an AUC of 0.795–0.861 in predicting the NLR in the TIME. Notably, the radiomics imaging biomarker is indistinguishable from the IHC-derived NLR status in predicting DFS and OS in each cohort (HR range: 1.694–3.394, P

Suggested Citation

  • Weicai Huang & Yuming Jiang & Wenjun Xiong & Zepang Sun & Chuanli Chen & Qingyu Yuan & Kangneng Zhou & Zhen Han & Hao Feng & Hao Chen & Xiaokun Liang & Shitong Yu & Yanfeng Hu & Jiang Yu & Yan Chen & , 2022. "Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32816-w
    DOI: 10.1038/s41467-022-32816-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32816-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32816-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roy S. Herbst & Jean-Charles Soria & Marcin Kowanetz & Gregg D. Fine & Omid Hamid & Michael S. Gordon & Jeffery A. Sosman & David F. McDermott & John D. Powderly & Scott N. Gettinger & Holbrook E. K. , 2014. "Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients," Nature, Nature, vol. 515(7528), pages 563-567, November.
    2. Daniel S. Chen & Ira Mellman, 2017. "Elements of cancer immunity and the cancer–immune set point," Nature, Nature, vol. 541(7637), pages 321-330, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Jodi M. Carter & Saranya Chumsri & Douglas A. Hinerfeld & Yaohua Ma & Xue Wang & David Zahrieh & David W. Hillman & Kathleen S. Tenner & Jennifer M. Kachergus & Heather Ann Brauer & Sarah E. Warren & , 2023. "Distinct spatial immune microlandscapes are independently associated with outcomes in triple-negative breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Fengqiao Li & Xue-Qing Zhang & William Ho & Maoping Tang & Zhongyu Li & Lei Bu & Xiaoyang Xu, 2023. "mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Maria Pouyiourou & Bianca N. Kraft & Timothy Wohlfromm & Michael Stahl & Boris Kubuschok & Harald Löffler & Ulrich T. Hacker & Gerdt Hübner & Lena Weiss & Michael Bitzer & Thomas Ernst & Philipp Schüt, 2023. "Nivolumab and ipilimumab in recurrent or refractory cancer of unknown primary: a phase II trial," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    7. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. E. H. Puttock & E. J. Tyler & M. Manni & E. Maniati & C. Butterworth & M. Burger Ramos & E. Peerani & P. Hirani & V. Gauthier & Y. Liu & G. Maniscalco & V. Rajeeve & P. Cutillas & C. Trevisan & M. Poz, 2023. "Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Jing Liu & Xia Bu & Chen Chu & Xiaoming Dai & John M. Asara & Piotr Sicinski & Gordon J. Freeman & Wenyi Wei, 2023. "PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Heng-Jia Liu & Heng Du & Damir Khabibullin & Mahsa Zarei & Kevin Wei & Gordon J. Freeman & David J. Kwiatkowski & Elizabeth P. Henske, 2023. "mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    11. Feng Xie & Xiaoxue Zhou & Peng Su & Heyu Li & Yifei Tu & Jinjin Du & Chen Pan & Xiang Wei & Min Zheng & Ke Jin & Liyan Miao & Chao Wang & Xuli Meng & Hans Dam & Peter Dijke & Long Zhang & Fangfang Zho, 2022. "Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Kristian Bjørn Hessellund & Ganggang Xu & Yongtao Guan & Rasmus Waagepetersen, 2022. "Second‐order semi‐parametric inference for multivariate log Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 244-268, January.
    14. Jingjie Yi & Omid Tavana & Huan Li & Donglai Wang & Richard J. Baer & Wei Gu, 2023. "Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Charlotte K. Y. Ng & Eva Dazert & Tuyana Boldanova & Mairene Coto-Llerena & Sandro Nuciforo & Caner Ercan & Aleksei Suslov & Marie-Anne Meier & Thomas Bock & Alexander Schmidt & Sylvia Ketterer & Xuey, 2022. "Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Elaine Lai-Han Leung & Run-Ze Li & Xing-Xing Fan & Lily Yan Wang & Yan Wang & Zebo Jiang & Jumin Huang & Hu-Dan Pan & Yue Fan & Hongmei Xu & Feng Wang & Haopeng Rui & Piu Wong & Hermi Sumatoh & Michae, 2023. "Longitudinal high-dimensional analysis identifies immune features associating with response to anti-PD-1 immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Shunli Fu & Lili Chang & Shujun Liu & Tong Gao & Xiao Sang & Zipeng Zhang & Weiwei Mu & Xiaoqing Liu & Shuang Liang & Han Yang & Huizhen Yang & Qingping Ma & Yongjun Liu & Na Zhang, 2023. "Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Zhongwei Xin & Mingjie Lin & Zhixing Hao & Di Chen & Yongyuan Chen & Xiaoke Chen & Xia Xu & Jinfan Li & Dang Wu & Ying Chai & Pin Wu, 2022. "The immune landscape of human thymic epithelial tumors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Alessandra Castiglioni & Yagai Yang & Katherine Williams & Alvin Gogineni & Ryan S. Lane & Amber W. Wang & Justin A. Shyer & Zhe Zhang & Stephanie Mittman & Alan Gutierrez & Jillian L. Astarita & Minh, 2023. "Combined PD-L1/TGFβ blockade allows expansion and differentiation of stem cell-like CD8 T cells in immune excluded tumors," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Le Qin & Yuanbin Cui & Tingjie Yuan & Dongmei Chen & Ruocong Zhao & Shanglin Li & Zhiwu Jiang & Qiting Wu & Youguo Long & Suna Wang & Zhaoyang Tang & Huixia Pan & Xiaoping Li & Wei Wei & Jie Yang & Xu, 2022. "Co-expression of a PD-L1-specific chimeric switch receptor augments the efficacy and persistence of CAR T cells via the CD70-CD27 axis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32816-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.