Modification of the telomerase gene with human regulatory sequences resets mouse telomeres to human length
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-56559-6
Download full text from publisher
References listed on IDEAS
- Saher Sue Hammoud & David A. Nix & Haiying Zhang & Jahnvi Purwar & Douglas T. Carrell & Bradley R. Cairns, 2009. "Distinctive chromatin in human sperm packages genes for embryo development," Nature, Nature, vol. 460(7254), pages 473-478, July.
- Riham Smoom & Catherine Lee May & Vivian Ortiz & Mark Tigue & Hannah M. Kolev & Melissa Rowe & Yitzhak Reizel & Ashleigh Morgan & Nachshon Egyes & Dan Lichtental & Emmanuel Skordalakes & Klaus H. Kaes, 2023. "Telomouse—a mouse model with human-length telomeres generated by a single amino acid change in RTEL1," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Han-Woong Lee & Maria A. Blasco & Geoffrey J. Gottlieb & James W. Horner & Carol W. Greider & Ronald A. DePinho, 1998. "Essential role of mouse telomerase in highly proliferative organs," Nature, Nature, vol. 392(6676), pages 569-574, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Grigorios Fanourgakis & Laura Gaspa-Toneu & Pavel A. Komarov & Panagiotis Papasaikas & Evgeniy A. Ozonov & Sebastien A. Smallwood & Antoine H. F. M. Peters, 2025. "DNA methylation modulates nucleosome retention in sperm and H3K4 methylation deposition in early mouse embryos," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
- Pasquale Perrone & Gennaro Lettieri & Carmela Marinaro & Valentina Longo & Simonetta Capone & Angiola Forleo & Sebastiana Pappalardo & Luigi Montano & Marina Piscopo, 2022. "Molecular Alterations and Severe Abnormalities in Spermatozoa of Young Men Living in the “Valley of Sacco River” (Latium, Italy): A Preliminary Study," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
- Xuedi Zhang & Ju Peng & Menghua Wu & Angyang Sun & Xiangyu Wu & Jie Zheng & Wangfei Shi & Guanjun Gao, 2023. "Broad phosphorylation mediated by testis-specific serine/threonine kinases contributes to spermiogenesis and male fertility," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Tobias T. Schmidt & Carly Tyer & Preeyesh Rughani & Candy Haggblom & Jeffrey R. Jones & Xiaoguang Dai & Kelly A. Frazer & Fred H. Gage & Sissel Juul & Scott Hickey & Jan Karlseder, 2024. "High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Ariane Lismer & Sarah Kimmins, 2023. "Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
- Riham Smoom & Catherine Lee May & Vivian Ortiz & Mark Tigue & Hannah M. Kolev & Melissa Rowe & Yitzhak Reizel & Ashleigh Morgan & Nachshon Egyes & Dan Lichtental & Emmanuel Skordalakes & Klaus H. Kaes, 2023. "Telomouse—a mouse model with human-length telomeres generated by a single amino acid change in RTEL1," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Filomena Mazzeo & Rosaria Meccariello, 2023. "Cannabis and Paternal Epigenetic Inheritance," IJERPH, MDPI, vol. 20(9), pages 1-14, April.
- Bertrand Theulot & Alan Tourancheau & Emma Simonin Chavignier & Etienne Jean & Jean-Michel Arbona & Benjamin Audit & Olivier Hyrien & Laurent Lacroix & Benoît Tallec, 2025. "Telomere-to-telomere DNA replication timing profiling using single-molecule sequencing with Nanotiming," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Natthakan Thongon & Feiyang Ma & Andrea Santoni & Matteo Marchesini & Elena Fiorini & Ashley Rose & Vera Adema & Irene Ganan-Gomez & Emma M. Groarke & Fernanda Gutierrez-Rodrigues & Shuaitong Chen & P, 2021. "Hematopoiesis under telomere attrition at the single-cell resolution," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56559-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.