IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56106-3.html
   My bibliography  Save this article

Solar-driven selective conversion of millimolar dissolved carbon to fuels with molecular flux generation

Author

Listed:
  • Bin Liu

    (Yale University
    Yale West Campus)

  • Zheng Qian

    (Yale University
    Yale West Campus)

  • Xiang Shi

    (Yale University
    Yale West Campus)

  • Haoqing Su

    (Yale University
    Yale West Campus)

  • Wentao Zhang

    (Yale University
    Yale West Campus)

  • Atsu Kludze

    (Yale University
    Yale West Campus)

  • Yuze Zheng

    (Yale University
    Yale West Campus
    Peking University)

  • Chengxing He

    (Yale University
    Yale West Campus)

  • Rito Yanagi

    (Yale University
    Yale West Campus)

  • Shu Hu

    (Yale University
    Yale West Campus)

Abstract

The direct utilization of dissolved inorganic carbon in seawater for CO2 conversion promises chemical production on-demand and with zero carbon footprint. Photoelectrochemical (PEC) CO2 reduction (CO2R) devices promise the sustainable conversion of dissolved carbon in seawater to carbon products using sunlight as the only energy input. However, the diffusion-dominant transport mechanism and the near-zero concentration of CO2(aq) (CO2 dissolved in aqueous solution) in static seawater has made it extremely challenging to achieve high solar-to-fuel (STF) efficiency and high carbon-product selectivity. Here, where CO2(aq) as a reactant generated in situ by acidification of HCO3- flows continuously from BiVO4 photoanodes to Si photocathodes, enabling a single-step conversion of dissolved carbon into products. Our PEC device significantly increases the CO selectivity from 3% to 21%, which approaches the 30% theoretical limit according to multi-physics modeling. Meanwhile, the Si/BiVO4 PEC CO2R device achieved a STF efficiency of 0.71%. Such flow engineering achieves flow-dependent selectivity, rate, and stability in simulated seawater, thus promising practical solar fuel production at scale.

Suggested Citation

  • Bin Liu & Zheng Qian & Xiang Shi & Haoqing Su & Wentao Zhang & Atsu Kludze & Yuze Zheng & Chengxing He & Rito Yanagi & Shu Hu, 2025. "Solar-driven selective conversion of millimolar dissolved carbon to fuels with molecular flux generation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56106-3
    DOI: 10.1038/s41467-025-56106-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56106-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56106-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaxin Guo & Yao Zheng & Zhenpeng Hu & Caiyan Zheng & Jing Mao & Kun Du & Mietek Jaroniec & Shi-Zhang Qiao & Tao Ling, 2023. "Direct seawater electrolysis by adjusting the local reaction environment of a catalyst," Nature Energy, Nature, vol. 8(3), pages 264-272, March.
    2. Ibadillah A. Digdaya & Ian Sullivan & Meng Lin & Lihao Han & Wen-Hui Cheng & Harry A. Atwater & Chengxiang Xiang, 2020. "A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Zhongling Li & Wenlong Wu & Menglin Wang & Yanan Wang & Xinlong Ma & Lei Luo & Yue Chen & Kaiyuan Fan & Yang Pan & Hongliang Li & Jie Zeng, 2022. "Ambient-pressure hydrogenation of CO2 into long-chain olefins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Francesca M. Toma & Jason K. Cooper & Viktoria Kunzelmann & Matthew T. McDowell & Jie Yu & David M. Larson & Nicholas J. Borys & Christine Abelyan & Jeffrey W. Beeman & Kin Man Yu & Jinhui Yang & Le C, 2016. "Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    5. Qian Wang & Julien Warnan & Santiago Rodríguez-Jiménez & Jane J. Leung & Shafeer Kalathil & Virgil Andrei & Kazunari Domen & Erwin Reisner, 2020. "Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water," Nature Energy, Nature, vol. 5(9), pages 703-710, September.
    6. Virgil Andrei & Geani M. Ucoski & Chanon Pornrungroj & Chawit Uswachoke & Qian Wang & Demetra S. Achilleos & Hatice Kasap & Katarzyna P. Sokol & Robert A. Jagt & Haijiao Lu & Takashi Lawson & Andreas , 2022. "Floating perovskite-BiVO4 devices for scalable solar fuel production," Nature, Nature, vol. 608(7923), pages 518-522, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Rui-Ting Gao & Jiangwei Zhang & Tomohiko Nakajima & Jinlu He & Xianhu Liu & Xueyuan Zhang & Lei Wang & Limin Wu, 2023. "Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Shixuan Zhao & Bin Liu & Kailang Li & Shujie Wang & Gong Zhang & Zhi-Jian Zhao & Tuo Wang & Jinlong Gong, 2024. "A silicon photoanode protected with TiO2/stainless steel bilayer stack for solar seawater splitting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    6. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Jie Liang & Zhengwei Cai & Zixiao Li & Yongchao Yao & Yongsong Luo & Shengjun Sun & Dongdong Zheng & Qian Liu & Xuping Sun & Bo Tang, 2024. "Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Jie Zhou & Jie Li & Liang Kan & Lei Zhang & Qing Huang & Yong Yan & Yifa Chen & Jiang Liu & Shun-Li Li & Ya-Qian Lan, 2022. "Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Guo Tian & Zhengwen Li & Chenxi Zhang & Xinyan Liu & Xiaoyu Fan & Kui Shen & Haibin Meng & Ning Wang & Hao Xiong & Mingyu Zhao & Xiaoyu Liang & Liqiang Luo & Lan Zhang & Binhang Yan & Xiao Chen & Hong, 2024. "Upgrading CO2 to sustainable aromatics via perovskite-mediated tandem catalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Tao Liu & Cheng Lan & Min Tang & Mengxin Li & Yitao Xu & Hangrui Yang & Qingyue Deng & Wenchuan Jiang & Zhiyu Zhao & Yifan Wu & Heping Xie, 2024. "Redox-mediated decoupled seawater direct splitting for H2 production," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Xing-Yi Li & Ze-Lin Zhu & Fentahun Wondu Dagnaw & Jie-Rong Yu & Zhi-Xing Wu & Yi-Jing Chen & Mu-Han Zhou & Tieyu Wang & Qing-Xiao Tong & Jing-Xin Jian, 2024. "Silicon photocathode functionalized with osmium complex catalyst for selective catalytic conversion of CO2 to methane," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Xiaodong Li & Li Li & Guangbo Chen & Xingyuan Chu & Xiaohui Liu & Chandrasekhar Naisa & Darius Pohl & Markus Löffler & Xinliang Feng, 2023. "Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Tao Liu & Zhiyu Zhao & Wenbin Tang & Yi Chen & Cheng Lan & Liangyu Zhu & Wenchuan Jiang & Yifan Wu & Yunpeng Wang & Zezhou Yang & Dongsheng Yang & Qijun Wang & Lunbo Luo & Taisheng Liu & Heping Xie, 2024. "In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Bilawal Khan & M. Bilal Faheem & Karthik Peramaiah & Jinlan Nie & Hao Huang & Zhongxiao Li & Chen Liu & Kuo-Wei Huang & Jr-Hau He, 2024. "Unassisted photoelectrochemical CO2-to-liquid fuel splitting over 12% solar conversion efficiency," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Fabio Massaro & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production," Energies, MDPI, vol. 17(13), pages 1-25, July.
    17. Guangyu Liu & Yuan Zhong & Zehua Liu & Gang Wang & Feng Gao & Chao Zhang & Yujie Wang & Hongwei Zhang & Jun Ma & Yangguang Hu & Aobo Chen & Jiangyuan Pan & Yuanzeng Min & Zhiyong Tang & Chao Gao & Yuj, 2024. "Solar-driven sugar production directly from CO2 via a customizable electrocatalytic–biocatalytic flow system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Zhouzhou Wang & Haotian Ye & Yixin Li & Bowen Sheng & Ping Wang & Pengfei Ou & Xiao-Yan Li & Tianqi Yu & Zijian Huang & Jinglin Li & Ying Yu & Xinqiang Wang & Zhen Huang & Baowen Zhou, 2025. "Surface-hydrogenated CrMnOx coupled with GaN nanowires for light-driven bioethanol dehydration to ethylene," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    19. Zhiyong Zhang & Yang Wang & Yangen Xie & Toru Tsukamoto & Qi Zhao & Qing Huang & Xingmiao Huang & Boyang Zhang & Wenjing Song & Chuncheng Chen & Hua Sheng & Jincai Zhao, 2025. "Floatable artificial leaf to couple oxygen-tolerant CO2 conversion with water purification," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    20. Wei Liu & Jiage Yu & Tianshui Li & Shihang Li & Boyu Ding & Xinlong Guo & Aiqing Cao & Qihao Sha & Daojin Zhou & Yun Kuang & Xiaoming Sun, 2024. "Self-protecting CoFeAl-layered double hydroxides enable stable and efficient brine oxidation at 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56106-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.