Author
Listed:
- Xiaonan Li
(Beijing Normal University)
- Lin Liu
(Beijing Normal University)
- Luyang Jia
(Beijing Normal University)
- Zhe Lian
(Beijing Normal University)
- Jing He
(Beijing Normal University)
- Shengzhu Guo
(Beijing Normal University)
- Ying Wang
(Beijing Normal University)
- Xuebo Chen
(Beijing Normal University)
- Hua Jiang
(Beijing Normal University)
Abstract
Developing donor-acceptor [n]cycloparaphenylenes (D-A [n]CPPs) with multiple emissions from different emissive states remains challenging yet crucial for achieving white-light emission in single-molecule. Here, we report our explorations into acceptor engineering of quinone-based D-A [10]CPPs (Nq/Aq/Tq[10]CPPs) via a post-lateral annulation using Diels-Alder reactions of oxTh[10]CPP. X-ray analysis reveals that Nq[10]CPP displays a side by side packing via naphthoquione stacking while Aq[10]CPP adopts an intercalated conformation through anthraquinone interaction. Fluorescence investigations reveal that the quinone-based [10]CPPs display distinctive acceptor-dependent dual-emission from both the locally excited state and charge transfer state after single-wavelength excitation in organic solvents, consequently leading to multicolor emissions, in particular, white-light emission in CHCl3 for Aq[10]CPP. In THF/water mixture, quinone-based [10]CPPs and oxTh[10]CPP display a wide range of fluorescence emissions including white-light emission as increasing the fraction of water, accompanying by the formation of nanoparticles as demonstrated by Tyndall effect and SEM. Interestingly, the fluorescence of Aq[10]CPP can be switched from white to blue in CHCl3 upon redox. Our investigations demonstrate that acceptor engineering not only endows quinone-based [10]CPPs with two distint emissive states for achieving white-light emission but also highlights an effective post-synthetic strategy for functionalizing CPP nanohoops with desirable properties.
Suggested Citation
Xiaonan Li & Lin Liu & Luyang Jia & Zhe Lian & Jing He & Shengzhu Guo & Ying Wang & Xuebo Chen & Hua Jiang, 2025.
"Acceptor engineering of quinone-based cycloparaphenylenes via post-synthesis for achieving white-light emission in single-molecule,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55895-x
DOI: 10.1038/s41467-025-55895-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55895-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.