IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55823-z.html
   My bibliography  Save this article

Host-microbe multiomic profiling identifies distinct COVID-19 immune dysregulation in solid organ transplant recipients

Author

Listed:
  • Harry Pickering

    (University of California Los Angeles)

  • Joanna Schaenman

    (University of California Los Angeles)

  • Hoang Van Phan

    (University of California San Francisco)

  • Cole Maguire

    (The University of Texas at Austin)

  • Alexandra Tsitsiklis

    (University of California San Francisco)

  • Nadine Rouphael

    (Emory School of Medicine)

  • Nelson Iván Agudelo Higuita

    (Oklahoma University Health Sciences Center)

  • Mark A. Atkinson

    (University of Florida)

  • Scott Brakenridge

    (University of Florida)

  • Monica Fung

    (University of California San Francisco)

  • William Messer

    (Oregon Health Sciences University)

  • Ramin Salehi-rad

    (University of California Los Angeles)

  • Matthew C. Altman

    (University of Washington)

  • Patrice M. Becker

    (National Institute of Allergy and Infectious Diseases/National Institutes of Health)

  • Steven E. Bosinger

    (Emory School of Medicine)

  • Walter Eckalbar

    (University of California San Francisco)

  • Annmarie Hoch

    (Boston Children’s Hospital)

  • Naresh Doni Jayavelu

    (University of Washington)

  • Seunghee Kim-Schulze

    (Icahn School of Medicine at Mount Sinai)

  • Meagan Jenkins

    (University of California Los Angeles)

  • Steven H. Kleinstein

    (Yale School of Medicine)

  • Florian Krammer

    (Icahn School of Medicine at Mount Sinai)

  • Holden T. Maecker

    (Stanford University School of Medicine)

  • Al Ozonoff

    (Boston Children’s Hospital
    Broad Institute of MIT & Harvard
    Harvard Medical School)

  • Joann Diray-Arce

    (Boston Children’s Hospital
    Harvard Medical School)

  • Albert Shaw

    (Yale School of Medicine)

  • Lindsey Baden

    (Harvard Medical School
    Brigham & Women’s Hospital)

  • Ofer Levy

    (Boston Children’s Hospital
    Broad Institute of MIT & Harvard
    Harvard Medical School)

  • Elaine F. Reed

    (University of California Los Angeles)

  • Charles R. Langelier

    (University of California San Francisco
    Chan Zuckerberg Biohub San Francisco)

Abstract

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels. In addition, transplant recipients exhibit decreased plasmablasts and transitional B cells, and increased senescent T cells. Blood and nasal transcriptional profiling demonstrate unexpected upregulation of innate immune signaling pathways and increased levels of several proinflammatory serum chemokines. Severe disease in transplant recipients, however, is characterized by a less robust induction of pro-inflammatory genes and chemokines. Together, our study reveals distinct immune features and altered viral dynamics in solid organ transplant recipients.

Suggested Citation

  • Harry Pickering & Joanna Schaenman & Hoang Van Phan & Cole Maguire & Alexandra Tsitsiklis & Nadine Rouphael & Nelson Iván Agudelo Higuita & Mark A. Atkinson & Scott Brakenridge & Monica Fung & William, 2025. "Host-microbe multiomic profiling identifies distinct COVID-19 immune dysregulation in solid organ transplant recipients," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55823-z
    DOI: 10.1038/s41467-025-55823-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55823-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55823-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huang Lin & Shyamal Das Peddada, 2020. "Analysis of compositions of microbiomes with bias correction," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan W. Lo & Domenico Cozzetto & James L. Alexander & Nathan P. Danckert & Matthew Madgwick & Naomi Knox & Jillian Yong Xin Sieh & Marton Olbei & Zhigang Liu & Hajir Ibraheim & Jesus Miguens Blanc, 2023. "Immune checkpoint inhibitor-induced colitis is mediated by polyfunctional lymphocytes and is dependent on an IL23/IFNγ axis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Koen Wortelboer & Patrick A. Jonge & Torsten P. M. Scheithauer & Ilias Attaye & E. Marleen Kemper & Max Nieuwdorp & Hilde Herrema, 2023. "Phage-microbe dynamics after sterile faecal filtrate transplantation in individuals with metabolic syndrome: a double-blind, randomised, placebo-controlled clinical trial assessing efficacy and safety," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Estelle E. Clerc & Jean-Baptiste Raina & Johannes M. Keegstra & Zachary Landry & Sammy Pontrelli & Uria Alcolombri & Bennett S. Lambert & Valerio Anelli & Flora Vincent & Marta Masdeu-Navarro & Andrea, 2023. "Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Georges P. Schmartz & Jacqueline Rehner & Miriam J. Schuff & Leidy-Alejandra G. Molano & Sören L. Becker & Marcin Krawczyk & Azat Tagirdzhanov & Alexey Gurevich & Richard Francke & Rolf Müller & Veren, 2024. "Exploring microbial diversity and biosynthetic potential in zoo and wildlife animal microbiomes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Karen D. Corbin & Elvis A. Carnero & Blake Dirks & Daria Igudesman & Fanchao Yi & Andrew Marcus & Taylor L. Davis & Richard E. Pratley & Bruce E. Rittmann & Rosa Krajmalnik-Brown & Steven R. Smith, 2023. "Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Osama Al-Dalahmah & Michael G. Argenziano & Adithya Kannan & Aayushi Mahajan & Julia Furnari & Fahad Paryani & Deborah Boyett & Akshay Save & Nelson Humala & Fatima Khan & Juncheng Li & Hong Lu & Yu S, 2023. "Re-convolving the compositional landscape of primary and recurrent glioblastoma reveals prognostic and targetable tissue states," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Bryan P. Brown & Colin Feng & Ramla F. Tanko & Shameem Z. Jaumdally & Rubina Bunjun & Smritee Dabee & Anna-Ursula Happel & Melanie Gasper & Donald D. Nyangahu & Maricianah Onono & Gonasagrie Nair & Th, 2023. "Copper intrauterine device increases vaginal concentrations of inflammatory anaerobes and depletes lactobacilli compared to hormonal options in a randomized trial," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Patrick A. Jonge & Koen Wortelboer & Torsten P. M. Scheithauer & Bert-Jan H. Born & Aeilko H. Zwinderman & Franklin L. Nobrega & Bas E. Dutilh & Max Nieuwdorp & Hilde Herrema, 2022. "Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Fahad Paryani & Ji-Sun Kwon & Christopher W. Ng & Kelly Jakubiak & Nacoya Madden & Kenneth Ofori & Alice Tang & Hong Lu & Shengnan Xia & Juncheng Li & Aayushi Mahajan & Shawn M. Davidson & Anna O. Bas, 2024. "Multi-omic analysis of Huntington’s disease reveals a compensatory astrocyte state," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    10. Barbara B. Warner & Bruce A. Rosa & I. Malick Ndao & Phillip I. Tarr & J. Philip Miller & Sarah K. England & Joan L. Luby & Cynthia E. Rogers & Carla Hall-Moore & Renay E. Bryant & Jacqueline D. Wang , 2023. "Social and psychological adversity are associated with distinct mother and infant gut microbiome variations," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Jun-Jun She & Wei-Xin Liu & Xiao-Ming Ding & Gang Guo & Jing Han & Fei-Yu Shi & Harry Cheuk-Hay Lau & Chen-Guang Ding & Wu-Jun Xue & Wen Shi & Gai-Xia Liu & Zhe Zhang & Chen-Hao Hu & Yinnan Chen & Chi, 2024. "Defining the biogeographical map and potential bacterial translocation of microbiome in human ‘surface organs’," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Muntsa Rocafort & David B. Gootenberg & Jesús M. Luévano & Jeffrey M. Paer & Matthew R. Hayward & Juliet T. Bramante & Musie S. Ghebremichael & Jiawu Xu & Zoe H. Rogers & Alexander R. Munoz & Samson O, 2024. "HIV-associated gut microbial alterations are dependent on host and geographic context," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Andrew Baldi & Sabine Braat & Mohammed Imrul Hasan & Cavan Bennett & Marilou Barrios & Naomi Jones & Gemma Moir-Meyer & Imadh Abdul Azeez & Stephen Wilcox & Mohammad Saiful Alam Bhuiyan & Ricardo Atai, 2024. "Community use of oral antibiotics transiently reprofiles the intestinal microbiome in young Bangladeshi children," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. M. Büttner & J. Ostner & C. L. Müller & F. J. Theis & B. Schubert, 2021. "scCODA is a Bayesian model for compositional single-cell data analysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Gertrude Ecklu-Mensah & Candice Choo-Kang & Maria Gjerstad Maseng & Sonya Donato & Pascal Bovet & Bharathi Viswanathan & Kweku Bedu-Addo & Jacob Plange-Rhule & Prince Oti Boateng & Terrence E. Forrest, 2023. "Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Zachary D. Wallen & Ayse Demirkan & Guy Twa & Gwendolyn Cohen & Marissa N. Dean & David G. Standaert & Timothy R. Sampson & Haydeh Payami, 2022. "Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    18. Kotaro Soeda & Takayoshi Sasako & Kenichiro Enooku & Naoto Kubota & Naoki Kobayashi & Yoshiko Matsumoto Ikushima & Motoharu Awazawa & Ryotaro Bouchi & Gotaro Toda & Tomoharu Yamada & Takuma Nakatsuka , 2023. "Gut insulin action protects from hepatocarcinogenesis in diabetic mice comorbid with nonalcoholic steatohepatitis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Smitha Sukumar & Fang Wang & Carra A. Simpson & Cali E. Willet & Tracy Chew & Toby E. Hughes & Michelle R. Bockmann & Rosemarie Sadsad & F. Elizabeth Martin & Henry W. Lydecker & Gina V. Browne & Kyli, 2023. "Development of the oral resistome during the first decade of life," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Shulei Wang, 2023. "Robust differential abundance test in compositional data," Biometrika, Biometrika Trust, vol. 110(1), pages 169-185.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55823-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.