IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17041-7.html
   My bibliography  Save this article

Analysis of compositions of microbiomes with bias correction

Author

Listed:
  • Huang Lin

    (University of Pittsburgh)

  • Shyamal Das Peddada

    (University of Pittsburgh)

Abstract

Differential abundance (DA) analysis of microbiome data continues to be a challenging problem due to the complexity of the data. In this article we define the notion of “sampling fraction” and demonstrate a major hurdle in performing DA analysis of microbiome data is the bias introduced by differences in the sampling fractions across samples. We introduce a methodology called Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC), which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework. This formulation makes a fundamental advancement in the field because, unlike the existing methods, it (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement.

Suggested Citation

  • Huang Lin & Shyamal Das Peddada, 2020. "Analysis of compositions of microbiomes with bias correction," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17041-7
    DOI: 10.1038/s41467-020-17041-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17041-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17041-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura Farnan & Anastasia Ivanova & Shyamal D Peddada, 2014. "Linear Mixed Effects Models under Inequality Constraints with Applications," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
    2. Shyamal D. Peddada & Katherine E. Prescott & Mark Conaway, 2001. "Tests for Order Restrictions in Binary Data," Biometrics, The International Biometric Society, vol. 57(4), pages 1219-1227, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jelsema, Casey M. & Peddada, Shyamal D., 2016. "CLME: An R Package for Linear Mixed Effects Models under Inequality Constraints," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i01).
    2. Belmiro P. M. Duarte & Anthony C. Atkinson & Satya P. Singh & Marco S. Reis, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," Statistical Papers, Springer, vol. 64(2), pages 587-615, April.
    3. Qing Yin & Xiaoshuang Xun & Shyamal D. Peddada & Jennifer J. Adibi, 2021. "Shape Detection Using Semi-Parametric Shape-Restricted Mixed Effects Regression Spline with Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 65-85, May.
    4. Chris Hans & David B. Dunson, 2005. "Bayesian Inferences on Umbrella Orderings," Biometrics, The International Biometric Society, vol. 61(4), pages 1018-1026, December.
    5. Bogomolov, Marina & Davidov, Ori, 2019. "Order restricted univariate and multivariate inference with adjustment for covariates in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 20-27.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17041-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.