IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55666-0.html
   My bibliography  Save this article

Regulation of stress granule maturation and dynamics by poly(ADP-ribose) interaction with PARP13

Author

Listed:
  • Shang-Jung Cheng

    (Johns Hopkins University)

  • Temitope Gafaar

    (Johns Hopkins University)

  • Jijin R. A. Kuttiyatveetil

    (Université de Montréal)

  • Aleksandr Sverzhinsky

    (Université de Montréal)

  • Carla Chen

    (Johns Hopkins University)

  • Minghui Xu

    (Johns Hopkins University)

  • Allison Lilley

    (Johns Hopkins University)

  • John M. Pascal

    (Université de Montréal)

  • Anthony K. L. Leung

    (Johns Hopkins University
    Johns Hopkins University
    Johns Hopkins University
    Johns Hopkins University)

Abstract

Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules—a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers. Single amino acid mutations in PARP13, which reduce its PAR-binding activity, lead to the formation of smaller yet more numerous stress granules than observed in the wild-type. This fragmented stress granule phenotype is also apparent in PARP13 variants with cancer-associated single-nucleotide polymorphisms (SNPs) that disrupt PAR binding. Notably, this fragmented phenotype is conserved across a variety of stresses that trigger stress granule formation via diverse pathways. Furthermore, this PAR-binding mutant diminishes condensate dynamics and impedes fusion. Overall, our study uncovers the important role of PAR-protein interactions in stress granule dynamics and maturation, mediated through PARP13.

Suggested Citation

  • Shang-Jung Cheng & Temitope Gafaar & Jijin R. A. Kuttiyatveetil & Aleksandr Sverzhinsky & Carla Chen & Minghui Xu & Allison Lilley & John M. Pascal & Anthony K. L. Leung, 2025. "Regulation of stress granule maturation and dynamics by poly(ADP-ribose) interaction with PARP13," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55666-0
    DOI: 10.1038/s41467-024-55666-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55666-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55666-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tanya Todorova & Florian J. Bock & Paul Chang, 2014. "PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript," Nature Communications, Nature, vol. 5(1), pages 1-14, December.
    2. Kengo Watanabe & Kazuhiro Morishita & Xiangyu Zhou & Shigeru Shiizaki & Yasuo Uchiyama & Masato Koike & Isao Naguro & Hidenori Ichijo, 2021. "Cells recognize osmotic stress through liquid–liquid phase separation lubricated with poly(ADP-ribose)," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Shih-Min A. Huang & Yuji M. Mishina & Shanming Liu & Atwood Cheung & Frank Stegmeier & Gregory A. Michaud & Olga Charlat & Elizabeth Wiellette & Yue Zhang & Stephanie Wiessner & Marc Hild & Xiaoying S, 2009. "Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling," Nature, Nature, vol. 461(7264), pages 614-620, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Li & Jie Ma & Qiyu Zhang & Huizi Gong & Dunqin Gao & Yujie Wang & Biyou Li & Xiao Li & Heyi Zheng & Zhihong Wu & Yunping Zhu & Ling Leng, 2022. "Spatially resolved proteomic map shows that extracellular matrix regulates epidermal growth," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Jerome Perrard & Susan Smith, 2023. "Multiple E3 ligases control tankyrase stability and function," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Sivakamasundari Vijayakumar & Roberta Sala & Gugene Kang & Angela Chen & Michelle Ann Pablo & Abidemi Ismail Adebayo & Andrea Cipriano & Jonas L. Fowler & Danielle L. Gomes & Lay Teng Ang & Kyle M. Lo, 2023. "Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Timo N. Kohler & Joachim Jonghe & Anna L. Ellermann & Ayaka Yanagida & Michael Herger & Erin M. Slatery & Antonia Weberling & Clara Munger & Katrin Fischer & Carla Mulas & Alex Winkel & Connor Ross & , 2023. "Plakoglobin is a mechanoresponsive regulator of naive pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Bikash Chandra Swain & Pascale Sarkis & Vanessa Ung & Sabrina Rousseau & Laurent Fernandez & Ani Meltonyan & V. Esperance Aho & Davide Mercadante & Cameron D. Mackereth & Mikayel Aznauryan, 2024. "Disordered regions of human eIF4B orchestrate a dynamic self-association landscape," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Balazs V. Varga & Maryam Faiz & Helena Pivonkova & Gabriel Khelifi & Huijuan Yang & Shangbang Gao & Emma Linderoth & Mei Zhen & Ragnhildur Thora Karadottir & Samer M. Hussein & Andras Nagy, 2022. "Signal requirement for cortical potential of transplantable human neuroepithelial stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Victoria H. Ng & Zachary Spencer & Leif R. Neitzel & Anmada Nayak & Matthew A. Loberg & Chen Shen & Sara N. Kassel & Heather K. Kroh & Zhenyi An & Christin C. Anthony & Jamal M. Bryant & Amanda Lawson, 2023. "The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Liviu Aron & Chenxi Qiu & Zhen Kai Ngian & Marianna Liang & Derek Drake & Jaejoon Choi & Marty A. Fernandez & Perle Roche & Emma L. Bunting & Ella K. Lacey & Sara E. Hamplova & Monlan Yuan & Michael S, 2023. "A neurodegeneration checkpoint mediated by REST protects against the onset of Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Daniel C. Carrettiero & Maria C. Almeida & Andrew P. Longhini & Jennifer N. Rauch & Dasol Han & Xuemei Zhang & Saeed Najafi & Jason E. Gestwicki & Kenneth S. Kosik, 2022. "Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Xin Li & Sheng Wang & Ying Xie & Hongmei Jiang & Jing Guo & Yixuan Wang & Ziyi Peng & Meilin Hu & Mengqi Wang & Jingya Wang & Qian Li & Yafei Wang & Zhiqiang Liu, 2023. "Deacetylation induced nuclear condensation of HP1γ promotes multiple myeloma drug resistance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Maxence Lanoizelet & Léo Michel & Ronan Lagadec & Hélène Mayeur & Lucile Guichard & Valentin Logeux & Dany Séverac & Kyle Martin & Christophe Klopp & Sylvain Marcellini & Héctor Castillo & Nicolas Pol, 2024. "Analysis of a shark reveals ancient, Wnt-dependent, habenular asymmetries in vertebrates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Frankie Poon & Rangarajan Sambathkumar & Roman Korytnikov & Yasaman Aghazadeh & Amanda Oakie & Paraish S. Misra & Farida Sarangi & M. Cristina Nostro, 2024. "Tankyrase inhibition promotes endocrine commitment of hPSC-derived pancreatic progenitors," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55666-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.