IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42939-3.html
   My bibliography  Save this article

Multiple E3 ligases control tankyrase stability and function

Author

Listed:
  • Jerome Perrard

    (New York University School of Medicine)

  • Susan Smith

    (New York University School of Medicine)

Abstract

Tankyrase 1 and 2 are ADP-ribosyltransferases that catalyze formation of polyADP-Ribose (PAR) onto themselves and their binding partners. Tankyrase protein levels are regulated by the PAR-binding E3 ligase RNF146, which promotes K48-linked polyubiquitylation and proteasomal degradation of tankyrase and its partners. We identified a novel interaction between tankyrase and a distinct class of E3 ligases: the RING-UIM (Ubiquitin-Interacting Motif) family. We show that RNF114 and RNF166 bind and stabilize monoubiquitylated tankyrase and promote K11-linked diubiquitylation. This action competes with RNF146-mediated degradation, leading to stabilization of tankyrase and its binding partner, Angiomotin, a cancer cell signaling protein. Moreover, we identify multiple PAR-binding E3 ligases that promote ubiquitylation of tankyrase and induce stabilization or degradation. Discovery of K11 ubiquitylation that opposes degradation, along with identification of multiple PAR-binding E3 ligases that ubiquitylate tankyrase, provide insights into mechanisms of tankyrase regulation and may offer additional uses for tankyrase inhibitors in cancer therapy.

Suggested Citation

  • Jerome Perrard & Susan Smith, 2023. "Multiple E3 ligases control tankyrase stability and function," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42939-3
    DOI: 10.1038/s41467-023-42939-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42939-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42939-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shih-Min A. Huang & Yuji M. Mishina & Shanming Liu & Atwood Cheung & Frank Stegmeier & Gregory A. Michaud & Olga Charlat & Elizabeth Wiellette & Yue Zhang & Stephanie Wiessner & Marc Hild & Xiaoying S, 2009. "Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling," Nature, Nature, vol. 461(7264), pages 614-620, October.
    2. Amit Bhardwaj & Yanling Yang & Beatrix Ueberheide & Susan Smith, 2017. "Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sivakamasundari Vijayakumar & Roberta Sala & Gugene Kang & Angela Chen & Michelle Ann Pablo & Abidemi Ismail Adebayo & Andrea Cipriano & Jonas L. Fowler & Danielle L. Gomes & Lay Teng Ang & Kyle M. Lo, 2023. "Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Timo N. Kohler & Joachim Jonghe & Anna L. Ellermann & Ayaka Yanagida & Michael Herger & Erin M. Slatery & Antonia Weberling & Clara Munger & Katrin Fischer & Carla Mulas & Alex Winkel & Connor Ross & , 2023. "Plakoglobin is a mechanoresponsive regulator of naive pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Jun Li & Jie Ma & Qiyu Zhang & Huizi Gong & Dunqin Gao & Yujie Wang & Biyou Li & Xiao Li & Heyi Zheng & Zhihong Wu & Yunping Zhu & Ling Leng, 2022. "Spatially resolved proteomic map shows that extracellular matrix regulates epidermal growth," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Balazs V. Varga & Maryam Faiz & Helena Pivonkova & Gabriel Khelifi & Huijuan Yang & Shangbang Gao & Emma Linderoth & Mei Zhen & Ragnhildur Thora Karadottir & Samer M. Hussein & Andras Nagy, 2022. "Signal requirement for cortical potential of transplantable human neuroepithelial stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Victoria H. Ng & Zachary Spencer & Leif R. Neitzel & Anmada Nayak & Matthew A. Loberg & Chen Shen & Sara N. Kassel & Heather K. Kroh & Zhenyi An & Christin C. Anthony & Jamal M. Bryant & Amanda Lawson, 2023. "The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Liviu Aron & Chenxi Qiu & Zhen Kai Ngian & Marianna Liang & Derek Drake & Jaejoon Choi & Marty A. Fernandez & Perle Roche & Emma L. Bunting & Ella K. Lacey & Sara E. Hamplova & Monlan Yuan & Michael S, 2023. "A neurodegeneration checkpoint mediated by REST protects against the onset of Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Frankie Poon & Rangarajan Sambathkumar & Roman Korytnikov & Yasaman Aghazadeh & Amanda Oakie & Paraish S. Misra & Farida Sarangi & M. Cristina Nostro, 2024. "Tankyrase inhibition promotes endocrine commitment of hPSC-derived pancreatic progenitors," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42939-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.